Show simple item record

dc.contributor.advisorSocolofsky, Scott A.
dc.creatorSeol, Dong Guan
dc.date.accessioned2010-01-15T00:13:01Z
dc.date.accessioned2010-01-16T00:57:13Z
dc.date.available2010-01-15T00:13:01Z
dc.date.available2010-01-16T00:57:13Z
dc.date.created2008-05
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2794
dc.description.abstractThis dissertation presents a series of laboratory experiments to study flow and mixing properties of multiphase plumes. The particle image velocimetry (PIV) and laserinduced fluorescence (LIF) techniques are developed to measure two-dimensional velocity and concentration fields of multiphase plumes. The developed measurement techniques are applied to bubble plumes in different ambient conditions. The problems and errors in the two-phase PIV application to a bubble plume case are addressed through a comparative study between the optical separation method using fluorescent particles and a new phase separation method using vector postprocessing. The study shows that the new algorithm predicts well the instantaneous and time-averaged velocity profiles and has errors comparable to those for image masking techniques. The phase separation method developed in the previous section is applied to study the mean flow characteristics of a bubble plume in quiescent and unstratified condition. The entrainment coefficients representing the mixing properties of a bubble plume are calculated to lie between 0.08 near the plume source and 0.05 in the upper region, and to depend on the non-dimensional quantity us/(B/z)1/3, where us is the bubble slip velocity, B is the initial buoyancy flux, and z is the height from the diffuser. Further, the LIF technique is investigated to measure the scalar concentration field around a bubble plume in quiescent, unstratified condition. This new application to bubble plumes accounts for light scattering by bubbles using an attenuation coef- ficient that is proportional to the local void fraction. Measured scalar concentration fields show similar trend in concentration fluctuation to turbulent plume cases. Finally, the velocity and concentration field measurements using the developed two-phase PIV and LIF methods are applied for a bubble plume in a density-stratified ambient. The turbulent flow characteristics induced by a bubble plume in a stratified ambient water are studied. The plume fluctuation frequency is measured as about 0.1 Hz and compares well to plume wandering frequency measured in unstratified plume cases.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectbubble plumeen
dc.subjectPIVen
dc.subjectLIFen
dc.subjectmean flow propertiesen
dc.subjectquantitative measurement of scalar concentration fielden
dc.subjectstratificationen
dc.titleEntrainment and mixing properties of multiphase plumes: Experimental studies on turbulence and scalar structure of a bubble plumeen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineOcean Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberChang, Kuang-An
dc.contributor.committeeMemberChen, Hamn-Ching
dc.contributor.committeeMemberHassan, Yassin A.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record