Show simple item record

dc.contributor.advisorAmato, Nancy
dc.creatorTang, Xinyu
dc.date.accessioned2010-01-15T00:06:09Z
dc.date.accessioned2010-01-16T00:34:49Z
dc.date.available2010-01-15T00:06:09Z
dc.date.available2010-01-16T00:34:49Z
dc.date.created2007-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2464
dc.description.abstractRNA and protein molecules undergo a dynamic folding process that is important to their function. Computational methods are critical for studying this folding pro- cess because it is difficult to observe experimentally. In this work, we introduce new computational techniques to study RNA and protein energy landscapes, includ- ing a method to approximate an RNA energy landscape with a coarse graph (map) and new tools for analyzing graph-based approximations of RNA and protein energy landscapes. These analysis techniques can be used to study RNA and protein fold- ing kinetics such as population kinetics, folding rates, and the folding of particular subsequences. In particular, a map-based Master Equation (MME) method can be used to analyze the population kinetics of the maps, while another map analysis tool, map-based Monte Carlo (MMC) simulation, can extract stochastic folding pathways from the map. To validate the results, I compared our methods with other computational meth- ods and with experimental studies of RNA and protein. I first compared our MMC and MME methods for RNA with other computational methods working on the com- plete energy landscape and show that the approximate map captures the major fea- tures of a much larger (e.g., by orders of magnitude) complete energy landscape. Moreover, I show that the methods scale well to large molecules, e.g., RNA with 200+ nucleotides. Then, I correlate the computational results with experimental findings. I present comparisons with two experimental cases to show how I can pre- dict kinetics-based functional rates of ColE1 RNAII and MS2 phage RNA and their mutants using our MME and MMC tools respectively. I also show that the MME and MMC tools can be applied to map-based approximations of protein energy energy landscapes and present kinetics analysis results for several proteins.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectRNA foldingen
dc.subjectprotein foldingen
dc.subjectkineticsen
dc.subjectmotion planningen
dc.subjectenergy landscapeen
dc.titleTechniques for modeling and analyzing RNA and protein folding energy landscapesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberGiedroc, David
dc.contributor.committeeMemberSze, Sing-hoi
dc.contributor.committeeMemberWelch, Jennifer
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record