Show simple item record

dc.contributor.advisorMcVay, Duane A.
dc.creatorLiu, Chang
dc.date.accessioned2010-01-15T00:02:44Z
dc.date.accessioned2010-01-16T00:29:17Z
dc.date.available2010-01-15T00:02:44Z
dc.date.available2010-01-16T00:29:17Z
dc.date.created2008-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2360
dc.description.abstractCurrently, effective reservoir management systems play a very important part in exploiting reservoirs. Fully exploiting all the possible events for a petroleum reservoir is a challenge because of the infinite combinations of reservoir parameters. There is much unknown about the underlying reservoir model, which has many uncertain parameters. MCMC (Markov Chain Monte Carlo) is a more statistically rigorous sampling method, with a stronger theoretical base than other methods. The performance of the MCMC method on a high dimensional problem is a timely topic in the statistics field. This thesis suggests a way to quantify uncertainty for high dimensional problems by using the MCMC sampling process under the Bayesian frame. Based on the improved method, this thesis reports a new approach in the use of the continuous MCMC method for automatic history matching. The assimilation of the data in a continuous process is done sequentially rather than simultaneously. In addition, by doing a continuous process, the MCMC method becomes more applicable for the industry. Long periods of time to run just one realization will no longer be a big problem during the sampling process. In addition, newly observed data will be considered once it is available, leading to a better estimate. The PUNQ-S3 reservoir model is used to test two methods in this thesis. The methods are: STATIC (traditional) SIMULATION PROCESS and CONTINUOUS SIMULATION PROCESS. The continuous process provides continuously updated probabilistic forecasts of well and reservoir performance, accessible at any time. It can be used to optimize long-term reservoir performance at field scale.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectMCMCen
dc.titleContinuous reservoir simulation model updating and forecasting using a markov chain monte carlo methoden
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentPetroleum Engineeringen
thesis.degree.disciplinePetroleum Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberDatta-Gupta,Akhil
dc.contributor.committeeMemberHuang,Jianhua
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record