Show simple item record

dc.contributor.advisorNguyen, Cam
dc.creatorLee, Sang Hun
dc.date.accessioned2012-10-19T15:29:56Z
dc.date.accessioned2012-10-22T18:00:13Z
dc.date.available2014-11-03T19:49:13Z
dc.date.created2012-08
dc.date.issued2012-10-19
dc.date.submittedAugust 2012
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2012-08-11477
dc.description.abstractThis dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer CMOS technology. The synthesizer is used for a multi-band multi-polarization radar system operating in the K- and Ka-band. The synthesizer is a fully integrated concurrent tri-band, tri-output phase-locked loop (PLL) with divide-by-3 injection locked frequency divider (ILFD). A new locking mechanism for the ILFD based on the gain control of the feedback amplifier is utilized to enable tunable and enhanced locking range which facilitates the attainment of stable locking states. The PLL has three concurrent multiband outputs: 3.47-4.313 GHz, 6.94-8.626 GHz and 19.44-21.42-GHz. High second-order harmonic suppression of 62.2 dBc is achieved without using a filter through optimization of the balance between the differential outputs. The proposed technique enables the use of an integer-N architecture for multi-band and microwave systems, while maintaining the benefit of the integer-N architecture; an optimal performance in area and power consumption. The 1/2 dual-ILFD with wide locking range and low-power consumption is analyzed and designed together with a divide-by-2 current mode logic (CML) divider. The 1/2 dual-ILFD enhances the locking range with low-power consumption through optimized load quality factor (QL) and output current amplitude (iOSC) simultaneously. The 1/2 dual-ILFD achieves a locking range of 692 MHz between 7.512 and 8.204 GHz. The new 1/2 dual-ILFD is especially attractive for microwave phase-locked loops and frequency synthesizers requiring low power and wide locking range. The 3.5-GHz divide-by-3 (1/3) ILFD consists of an internal 10.5-GHz Voltage Controlled Oscillator (VCO) functioning as an injection source, 1/3 ILFD core, and output inverter buffer. A phase tuner implemented on an asymmetric inductor is proposed to increase the locking range. The other divide-by-3 ILFD utilizes self-injection technique. The self-injection technique substantially enhances the locking range and phase noise, and reduces the minimum power of the injection signal needed for the 1/3 ILFD. The locking range is increased by 47.8 % and the phase noise is reduced by 14.77 dBc/Hz at 1-MHz offset.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectMulti-Output PLLen
dc.subjectSelf-Injectionen
dc.subjectMulti-Band PLLen
dc.subject1/3 Injection Locked Divideren
dc.subjectILFDen
dc.titleA Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systemsen
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberKarsilayan, Aydin
dc.contributor.committeeMemberKish, Laszlo
dc.contributor.committeeMemberMohanty, Binayak
dc.type.genrethesisen
dc.type.materialtexten
local.embargo.terms2014-10-22


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record