Show simple item record

dc.contributor.advisorChester, Frederick M.
dc.creatorDilci, Gokturk Mehmet
dc.date.accessioned2010-10-12T22:31:44Z
dc.date.accessioned2010-10-14T16:07:19Z
dc.date.available2010-10-12T22:31:44Z
dc.date.available2010-10-14T16:07:19Z
dc.date.created2010-08
dc.date.issued2010-10-12
dc.date.submittedAugust 2010
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8219
dc.description.abstractGranular aggregates of quartz subjected to triaxial compression under constant effective pressures (Pe) undergo macroscopic failure at critical stress states that depend on the effective mean stress. Although the mode of failure and mechanical response vary systematically with mean stress at failure, prefailure loading at subcritical stress states may induce yielding, and subcritical load paths may influence behavior at failure. Here, I investigate how the failure of quartz aggregates at conditions favoring compaction depends on consolidation history and load path in the transitional and ductile deformation regimes in terms of strain localization and microfracture fabric. Three distinct non-standard triaxial compression load paths were employed; the paths involve different preconsolidation of the aggregates at subcritical isotropic stress followed by differential loading with increasing or decreasing confining pressure. Deformed aggregates were injected with epoxy and studied using optical microscopy techniques to determine microscopic damage evolution for the different load paths. Microfracture data show that preconsolidation at subcritical isotropic loads facilitates formation of campaction bands during subsequent triaxial compression in the transitional regime. The preferred orientation of intragranular cracks evolves from near random fabrics for isotropic loading to strongly preferred orientations parallel to the maximum principal compression direction for differential loading, with the strongest preferred orientation within the compaction bands. Aside from the preconsolidation, different load paths have only a minor effect on the mechanical response during macroscopic failure.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectLoad Pathen
dc.subjectCompactional Deformation Bandsen
dc.subjectConsolidationen
dc.titleEffect of Load Path on Mode of Failure at the Brittle-ductile Transition in Well-sorted Aggregates of St. Peter Sanden
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentGeology and Geophysicsen
thesis.degree.disciplineGeologyen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberKronenberg, Andreas K.
dc.contributor.committeeMemberAyers, Walter B.
dc.type.genreElectronic Thesisen
dc.type.materialtexten


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record