Show simple item record

dc.contributor.advisorHahn, Mariah
dc.creatorBulick, Allen
dc.date.accessioned2010-01-15T00:16:38Z
dc.date.accessioned2010-01-16T00:12:48Z
dc.date.available2010-01-15T00:16:38Z
dc.date.available2010-01-16T00:12:48Z
dc.date.created2009-08
dc.date.issued2010-01-14
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2009-08-3249
dc.description.abstractThe research presented here deals with synthetic materials for application in tissue engineering, primarily poly(ethylene glycol) (PEG) and poly(dimethyl siloxane)star (PDMS)star. Tissue engineering seeks to repair or replace damaged tissue through implantation of cell encapsulated in an artificial scaffold. Cell differentiation and extracellular matrix (ECM) deposition can be influenced through a wide variety of in vitro culture techniques including biochemical stimuli, cell-cell interactions, mechanical conditioning and scaffold physical properties. In order to systematically optimize in vitro conditions for tissue engineering experiments, the individual effects of these different components must be studied. PEG hydrogels are a suitable scaffold for this because of their biocompatibility and biological "blank slate" nature. This dissertation presents data investigating: the effects of glycosaminoglycans (GAGs) as biochemical stimuli on pig vocal fold fibroblasts (PVFfs); the effects of mechanical conditioning and cell-cell interactions on smooth muscle cells (SMCs); and the effects of scaffold physical properties on SMCs. Results show that GAGs influence PVFf behavior and are an important component in scaffold design. Hyaluronic acid (HA) formulations showed similar production in collagen I and III as well as reduced levels of smooth muscle a-actin (SMa-actin), while chondroitin sulfate (CSC) and heparin sulfate showed enriched collagen III environments with enhanced expression of SMa-actin. A physiological flow system was developed to give comprehensive control over in vitro mechanical conditioning on TEVGs. Experiments performed on SMCs involved creating multi-layered TEVGs to mimic natural vascular tissue. Constructs subjected to mechanical conditioning with an endothelial cell (EC) layer showed enhanced expression of SMC differentiation markers calponin h1 and myocardin and enhanced deposition of elastin. Consistent with other studies, EC presence diminished overall collagen production and collagen I, specifically. Novel PDMSstar-PEG hydrogels were studied to investigate the effects of inorganic content on mesenchymal stem cell differentiation for use in TEVGs. Results agree with previous observations showing that a ratio of 5:95 PDMSstar: PEG by weight enhances SMC differentiation markers; however, statistically significant conclusions could not be made. By studying and optimizing in vitro culture conditions including scaffold properties, mechanical conditioning and multi-layered cell-cell interactions, TEVGs can be designed to maximize SMC differentiation and ECM production.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectTissue Engineeringen
dc.subjectSmooth Muscle Cellsen
dc.subjectVocal Folden
dc.subjectVascular Graftsen
dc.titleSystematic Investigation of Hydrogel Material Properties on Cell Responses for Vocal Fold and Vascular Graft Tissue Engineeringen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberPishko, Michael
dc.contributor.committeeMemberGrunlan, Melissa
dc.contributor.committeeMemberCheng, Zhengdong
dc.type.genreElectronic Dissertationen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record