Show simple item record

dc.contributor.advisorBatteas, James D.
dc.creatorPickett, Ammon T.
dc.date.accessioned2010-01-16T02:29:52Z
dc.date.available2010-01-16T02:29:52Z
dc.date.created2008-08
dc.date.issued2010-01-16
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-2008-08-64
dc.description.abstractAs alumina plays ever more important roles in advanced technologies, such as substrates for in vivo biological sensors, catalysts for water purification and components of novel fuel devices, it is exposed to various environments. These environments lead to wear and degradation due to chemical and mechanical forces. Macroscale tribological tests including the scratch test and indentation are unable to analyze nanoscale properties due to their limited sensitivity. Today, nanotribologists incorporate three main tools to analyze nanoscale tribological properties: atomic force microscopy (AFM), the nanoindentor and surface force apparatus. Of these, AFM is the instrument of choice due to the sensitivity to and diversity of surface properties analyzed in a single setting. Through adhesion measurements and scratch testing under known loads the AFM was used to analyze the effect of OH- on the degradation of the alumina surface. Fourier transform infrared spectroscopy (FTIR) and AFM were also used to analyze the stability of self-assembled monolayers (SAMs) on the alumina surface. Through scanning a region of the surface with a defined force in an aqueous environment, the tribochemical surface properties were found. The pressure required to induce degradation of the first O-Al layer (~2 �) ranged from 3.10 GPa at a pH 3 to 1.58 GPa at pH 10. Further analysis of adhesion across the surface and within a defect region exposed significant changes in the forces of adhesion as the alumina surface experienced wear. At pH 3, 5, 7, and 10 the adhesion was approximately double that of the defect free surface. Two well known molecules were examined for their ability to protect the surface from bond rupture due to the catalytic effect of OH-. SAMs of octadyclephosphonic acid (OPA) and Octadycletrichlorosilane (OTS) were assembled on the alumina surface. FTIR spectra indicated well ordered monolayers formed from each molecule. The exposure of OPA to aqueous environments of pH >7 lead to the degradation of the SAM. OTS, on the other hand, demonstrated significantly more resilience to degradation as indicated through FTIR and AFM analysis.en
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectAluminaen
dc.subjectWearen
dc.subjectTribologyen
dc.titleTHE INFLUENCE OF WATER ON THE DEGRADATION AND WEAR OF AL2O3 SURFACESen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemistryen
thesis.degree.disciplineChemistryen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberCremer, Paul S.
dc.contributor.committeeMemberShantz, Daniel F.
dc.contributor.committeeMemberSon, Dong Hee
dc.type.genreElectronic Thesisen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record