Show simple item record

dc.contributor.advisorNarayanan, Krishna R.
dc.creatorMothi Venkatesan, Sabaresan
dc.date.accessioned2010-01-15T00:13:44Z
dc.date.accessioned2010-01-16T02:22:06Z
dc.date.available2010-01-15T00:13:44Z
dc.date.available2010-01-16T02:22:06Z
dc.date.created2007-08
dc.date.issued2009-06-02
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1924
dc.description.abstractLuby Transform Codes were the first class of universal erasure codes introduced to fully realize the concept of scalable and fault‐tolerant distribution of data over computer networks, also called Digital Fountain. Later Raptor codes, a generalization of the LT codes were introduced to trade off complexity with performance. In this work, we show that an even broader class of codes exists that are near optimal for the erasure channel and that the Raptor codes form a special case. More precisely, Raptorlike codes can be designed based on an iterative (joint) decoding schedule wherein information is transferred between the LT decoder and an outer decoder in an iterative manner. The design of these codes can be formulated as a LP problem using EXIT Charts and density evolution. In our work, we show the existence of codes, other than the Raptor codes, that perform as good as the existing ones. We extend this framework of joint decoding of the component codes to the additive white Gaussian noise channels and introduce the design of Rateless codes for these channels. Under this setting, for asymptotic lengths, it is possible to design codes that work for a class of channels defined by the signal‐to‐noise ratio. In our work, we show that good profiles can be designed using density evolution and Gaussian approximation. EXIT charts prove to be an intuitive tool and aid in formulating the code design problem as a LP problem. EXIT charts are not exact because of the inherent approximations. Therefore, we use density evolution to analyze the performance of these codes. In the Gaussian case, we show that for asymptotic lengths, a range of designs of Rateless codes exists to choose from based on the required complexity and the overhead. Moreover, under this framework, we can design incrementally redundant schemes for already existing outer codes to make the communication system more robust to channel noise variations.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectUniversal Codesen
dc.subjectRateless Codesen
dc.subjectEXIT Chartsen
dc.subjectDensity Evolutionen
dc.subjectRaptor Codesen
dc.subjectLT Codesen
dc.subjectLDPC Codesen
dc.subjectBelief Propogationen
dc.subjectMessage Passingen
dc.subjectGraphical Codesen
dc.titleExit charts based analysis and design of rateless codes for the erasure and Gaussian channelsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberDaripa, Prabir
dc.contributor.committeeMemberMadsen, Christi K.
dc.contributor.committeeMemberPfister, Henry D.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record