Show simple item record

dc.contributor.advisorReddy, J. N.
dc.creatorUnnikrishnan, Vinu Unnithan
dc.date.accessioned2010-01-15T00:00:53Z
dc.date.accessioned2010-01-16T01:48:46Z
dc.date.available2010-01-15T00:00:53Z
dc.date.available2010-01-16T01:48:46Z
dc.date.created2007-08
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1469
dc.description.abstractThe overall goal of the present research is to provide a computationally based methodology to realize the projected extraordinary properties of Carbon Nanotube (CNT)- reinforced composites and polymeric nanofibers for engineering applications. The discovery of carbon nanotubes (CNT) and its derivatives has led to considerable study both experimentally and computationally as carbon based materials are ideally suited for molecular level building blocks for nanoscale systems. Research in nanomechanics is currently focused on the utilization of CNTs as reinforcements in polymer matrices as CNTs have a very high modulus and are extremely light weight. The nanometer dimension of a CNT and its interaction with a polymer chain requires a study involving the coupling of the length scales. This length scale coupling requires analysis in the molecular and higher order levels. The atomistic interactions of the nanotube are studied using molecular dynamic simulations. The elastic properties of neat nanotube as well as doped nanotube are estimated first. The stability of the nanotube under various conditions is also dealt with in this dissertation. The changes in the elastic stiffness of a nanotube when it is embedded in a composite system are also considered. This type of a study is very unique as it gives information on the effect of surrounding materials on the core nanotube. Various configurations of nanotubes and nanocomposites are analyzed in this dissertation. Polymeric nanofibers are an important component in tissue engineering; however, these nanofibers are found to have a complex internal structure. A computational strategy is developed for the first time in this work, where a combined multiscale approach for the estimation of the elastic properties of nanofibers was carried out. This was achieved by using information from the molecular simulations, micromechanical analysis, and subsequently the continuum chain model, which was developed for rope systems. The continuum chain model is modified using properties of the constituent materials in the mesoscale. The results are found to show excellent correlation with experimental measurements. Finally, the entire atomistic to mesoscale analysis was coupled into the macroscale by mathematical homogenization techniques. Two-scale mathematical homogenization, called asymptotic expansion homogenization (AEH), was used for the estimation of the overall effective properties of the systems being analyzed. This work is unique for the formulation of spectral/hp based higher-order finite element methods with AEH. Various nanocomposite and nanofibrous structures are analyzed using this formulation. In summary, in this dissertation the mechanical characteristics of nanotube based composite systems and polymeric nanofibrous systems are analyzed by a seamless integration of processes at different scales.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectCarbon Nanotubesen
dc.subjectNanocompositesen
dc.subjectMolecular Dynamicsen
dc.subjectFunctionalized nanotubesen
dc.subjectmicromechanicsen
dc.subjectHomogenization Methodsen
dc.subjectNanofibersen
dc.subjectHigher order finite element methodsen
dc.titleMultiscale analysis of nanocomposite and nanofibrous structuresen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberBarroso, Luciana R.
dc.contributor.committeeMemberGao, Xin-Lin
dc.contributor.committeeMemberRoesset, Jose M.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record