Show simple item record

dc.contributor.advisorStrouboulis, Theofanis
dc.creatorHidajat, Realino Lulie
dc.date.accessioned2010-01-15T00:01:38Z
dc.date.accessioned2010-01-16T01:20:08Z
dc.date.available2010-01-15T00:01:38Z
dc.date.available2010-01-16T01:20:08Z
dc.date.created2007-05
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1221
dc.description.abstractThis dissertation presents the Generalized Finite Element Method (GFEM) for the scalar Helmholtz equation, which describes the time harmonic acoustic wave propagation problem. We introduce several handbook functions for the Helmholtz equation, namely the planewave, wave-band, and Vekua functions, and we use these handbook functions to enrich the Finite Element space via the Partition of Unity Method to create the GFEM space. The enrichment of the approximation space by these handbook functions reduces the pollution effect due to wave number and we are able to obtain a highly accurate solution with a much smaller number of degrees-of-freedom compared with the classical Finite Element Method. The q-convergence of the handbook functions is investigated, where q is the order of the handbook function, and it is shown that asymptotically the handbook functions exhibit the same rate of exponential convergence. Hence we can conclude that the selection of the handbook functions from an admissible set should be dictated only by the ease of implementation and computational costs. Another issue addressed in this dissertation is the error coming from the artificial truncation boundary condition, which is necessary to model the Helmholtz problem set in the unbounded domain. We observe that for high q, the most significant component of the error is the one due to the artificial truncation boundary condition. Here we propose a method to assess this error by performing an additional computation on the extended domain using GFEM with high q.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectGeneralized Finite Elementen
dc.subjectHelmholtz Equationen
dc.titleGeneralized finite element method for Helmholtz equationen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentAerospace Engineeringen
thesis.degree.disciplineAerospace Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberEfendiev, Yalchin
dc.contributor.committeeMemberJunkins, John L
dc.contributor.committeeMemberPasciak, Joseph
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record