Show simple item record

dc.contributor.advisorPike, Scott M.
dc.creatorIdimadakala, Vijaya K.
dc.date.accessioned2010-01-15T00:00:00Z
dc.date.accessioned2010-01-16T02:07:02Z
dc.date.available2010-01-15T00:00:00Z
dc.date.available2010-01-16T02:07:02Z
dc.date.created2006-12
dc.date.issued2009-05-15
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1072
dc.description.abstractWe examine the tolerance of dining philosopher algorithms subject to process crash faults in arbitrary conflict graphs. This classic problem is unsolvable in asynchronous message-passing systems subject to even a single crash fault. By contrast, dining can be solved in synchronous systems capable of implementing the perfect failure detector P (from the Chandra-Toueg hierarchy). We show that dining is also solvable in weaker timing models using a combination of the trusting detector T and the strong detector S; Our approach extends and composes two currents of previous research. First, we define a parametric generalization of Lynch’s classic algorithm for hierarchical resource allocation. Our construction converts any mutual exclusion algorithm into a valid dining algorithm. Second, we consider the fault-tolerant mutual exclusion algorithm (FTME) of Delporte-Gallet, et al., which uses T and the strong detector S to mask crash faults in any environment. We instantiate our dining construction with FTME, and prove that the resulting dining algorithm guarantees masking tolerance to crash faults. Our contribution (1) defines a new construction for transforming mutual exclusion algorithms into dining algorithms, and (2) demonstrates a better upper-bound on the fault-detection capabilities necessary to mask crash faults in dining philosophers.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.subjectdiningen
dc.subjectmasking toleranceen
dc.titleDining philosophers with masking tolerance to crash faultsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberKlappenecker, Andreas
dc.contributor.committeeMemberPappu, Madhav
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record