Show simple item record

dc.contributor.advisorMadsen, Christi K.
dc.creatorThompson, Michael Thomas
dc.date.accessioned2006-10-30T23:34:01Z
dc.date.available2006-10-30T23:34:01Z
dc.date.created2006-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4440
dc.description.abstractA fast measurement technique based on the modulation phase-shift technique is developed to measure the wavelength-dependent magnitude and phase responses of optical devices. The measured phase response is in the form of group delay, which is used to determine the chromatic dispersion in the device under test by taking the derivative of the group delay with respect to optical wavelength. The measurement setup allows both step-tunable and sweeping laser sources. A modulation frequency of up to 2.7 GHz is accommodated. An alternate method for the phase measurement that overcomes non-linearities in the measurement setup is also presented. The speed of the measurement setup is limited by the sweeping speed of the laser source, which for the Agilent 81682A is 40 nm/sec. The magnitude accuracy is determined by taking a comparison to the commercially available Micron Finisar measurement system, where an error of 0.125 dB is noted. The phase accuracy of the measurement setup is tested by taking the Hilbert transform of the measured magnitude response of an Acetylene gas cell and comparing it to the integral of the measured group delay. The average deviation between the two methods is 0.1 radians. An Acetylene gas cell, fiber Bragg grating, and chirped Bragg grating are tested with the measurement setup and the Agilent 8168The characterization of the setup leads to the conclusion that the measurement setup developed in this paper is fast and accurate. The speed of the technique is on the order of microseconds for a single measurement and excels beyond the speed of the standard modulation phase-shift technique, which includes measurement times on the order of minutes. The accuracy of the technique is within 0.125 dB for magnitude measurements and 0.1 radians for phase measurements when compared to commercially available measurement systems.2A laser source at 40 nm/sec and the measurement plots are presented.en
dc.format.extent721988 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectgroup delayen
dc.subjectdispersionen
dc.subjectmodulationen
dc.subjectphaseen
dc.subjectopticalen
dc.subjectfiltersen
dc.subjectmeasurementen
dc.subjectbraggen
dc.subjectgas cellen
dc.titleFast amplitude and delay measurement for characterization of optical devicesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmenten
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberSu, Chin B.
dc.contributor.committeeMemberWright, Steven
dc.contributor.committeeMemberYeh, Alvin T.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record