Show simple item record

dc.contributor.advisorSue, Hung-Jue
dc.creatorWeon, Jong Il
dc.date.accessioned2006-10-30T23:31:32Z
dc.date.available2006-10-30T23:31:32Z
dc.date.created2005-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4375
dc.description.abstractTraitedness has been described as the “the degree to which a particular trait structure is approximated in a given person” (Tellegen, p. 28, 1991) and has been hypothesized as one explanation for findings of weak trait-behavior relationships. That is, if traits are differentially applicable to different individuals, then trait-behavior relationships may be moderated based on the strength with which an individual fits with a given trait model. This study used moderated multiple regression to test the moderating effects of four different traitedness indicators to increase the prediction of diagnostic consistency in four personality disorders, and also tested the main effects of traitedness estimates to predict cross-situational consistency of functional impairment. Traitedness estimates performed better in the prediction of increased diagnostic consistency, though there were some isolated findings of traitedness increasing crosssituational consistency of functional impairment. orientation of the clay in the nanocomposite and the simple shear process. It is found that the modulus, strength, and heat distortion temperature of the nanocomposites decrease as the clay aspect ratio and degree of orientation are reduced. The micromechanics-based models accurately describe the relationship between clay structural parameters and the corresponding moduli for exfoliated nanocomposites. The impact fracture mechanisms of polypropylene (PP)-calcium carbonate (CaCO3) nanoparticles have been investigated. A detailed investigation reveals that the CaCO3 nanoparticles act as stress concentrators to initiate massive crazes, followed by shear banding in the PP matrix.en
dc.format.extent9578338 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectNanocompositesen
dc.subjectMechanical Propertiesen
dc.titleRoles of nanofiller structure on mechanical behavior of thermoplastic nanocompositesen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentMechanical Engineeringen
thesis.degree.disciplineMechanical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberCreasy, Terry S.
dc.contributor.committeeMemberFord, David M.
dc.contributor.committeeMemberSuh, Chii-Der S.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record