Show simple item record

dc.contributor.advisorZhang, Jun
dc.creatorSmith, Ernest Ray
dc.date.accessioned2006-10-30T23:24:12Z
dc.date.available2006-10-30T23:24:12Z
dc.date.created2006-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4182
dc.description.abstractLaboratory experiments were performed to study and improve longshore sediment transport rate predictions. Measured total longshore transport in the laboratory was approximately three times greater for plunging breakers than spilling breakers. Three distinct zones of longshore transport were observed across the surf zone: the incipient breaker zone, inner surf zone, and swash zone. Transport at incipient breaking was influenced by breaker type; inner surf zone transport was dominated by wave height, independent of wave period; and swash zone transport was dependent on wave period. Selected predictive formulas to compute total load and distributed load transport were compared to laboratory and field data. Equations by Kamphuis (1991) and Madsen et al. (2003) gave consistent total sediment transport estimates for both laboratory and field data. Additionally, the CERC formula predicted measurements well if calibrated and applied to similar breaker types. Each of the distributed load models had shortcomings. The energetics model of Bodge and Dean (1987) was sensitive to fluctuations in energy dissipation and often predicted transport peaks that were not present in the data. The Watanabe (1992) equation, based on time-averaged bottom stress, predicted no transport at most laboratory locations. The Van Rijn (1993) model was comprehensive and required hydrodynamic, bedform, and sediment data. The model estimated the laboratory cross-shore distribution well, but greatly overestimated field transport. Seven models were developed in this study based on the principle that transported sediment is mobilized by the total shear stress acting on the bottom and transported by the current at that location. Shear stress, including the turbulent component, was calculated from the wave orbital velocity. Models 1 through 3 gave good estimates of the transport distribution, but underpredicted the transport peak near the plunging wave breakpoint. A suspension term was included in Models 4 through 7, which improved estimates near breaking for plunging breakers. Models 4, 5 and 7 also compared well to the field measurements. It was concluded that breaker type is an important variable in determining the amount of transport that occurs at a location. Lastly, inclusion of the turbulent component of the orbital velocity is vital in predictive sediment transport equations.en
dc.format.extent12688302 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectLongshore Sediment Transporten
dc.subjectBreaking Wavesen
dc.subjectLaboratory Experimenten
dc.subjectField Experimenten
dc.subjectphysical modelingen
dc.subjectsurf zone processesen
dc.subjectCERC formulaen
dc.titleLongshore sediment transport rate calculated incorporating wave orbital velocity fluctuationsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineOcean Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberEdge, Billy L.
dc.contributor.committeeMemberHughes, Steven A.
dc.contributor.committeeMemberStoessel, Achim
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record