Show simple item record

dc.contributor.advisorNorth, Gerald R.
dc.contributor.advisorBowman, Kenneth P.
dc.creatorCollier, Jonathan Craig
dc.date.accessioned2005-11-01T15:50:11Z
dc.date.available2005-11-01T15:50:11Z
dc.date.created2004-08
dc.date.issued2005-11-01
dc.identifier.urihttps://hdl.handle.net/1969.1/2715
dc.description.abstractThis study evaluates the simulation of tropical precipitation by the Community Climate Model, Version 3, developed at the National Center for Atmospheric Research. For an evaluation of the annual cycle of precipitation, monthly-mean precipitation rates from an ensemble of CCM3 simulations are compared to those computed from observations of the TRMM satellite over a 44-month period. On regional and sub-regional scales, the comparison fares well over much of the Eastern Hemisphere south of 10◦S and over South America. However, model - satellite differences are large in portions of Central America and the Caribbean, the southern tropical Atlantic, the northern Indian Ocean, and the western equatorial and southern tropical Pacific. Since precipitation in the Tropics is the primary source of latent energy to the general circulation, such large model - satellite differences imply large differences in the amount of latent energy released. Differences are seasonally-dependent north of 10◦N, where model wet biases occur in realistic wet seasons or model-generated artificial wet seasons. South of 10◦N, the model wet biases exist throughout the year or have no recognizable pattern. For an evaluation of the diurnal cycle of precipitation, hourly-averaged precipitation rates from the same ensemble of simulations and for the same 44-month period are compared to observations from the Tropical Rainfall Measuring Mission (TRMM) satellite. Comparisons are made for 15◦ longitude ?? 10◦ latitude boxes and for larger geographical areas within the Tropics. The temporally- and spatially-averaged hourly precipitation rates from CCM3 and from TRMM are fit to the diurnal harmonic by the method of linear leastsquares regression, and the phases and the amplitudes of the diurnal cycles are compared. The model??s diurnal cycle is too strong over major land masses, particularly over South America (by a factor of 3), and is too weak over many oceans, particularly the northwestern Tropical Pacific (by a factor of 2). The model-satellite phase differences tend to be more homogeneous. The peak in the daily precipitation in the model consistently precedes the observations nearly everywhere. Phase differences are large over Australia, Papua New Guinea, and Saharan Africa, where CCM3 leads TRMM by 4 hours, 5 to 6 hours, and 9 to 11 hours respectively. A model sensitivity experiment shows that increasing the convective adjustment time scale in the model??s deep convective parameterization reduces its positive amplitude bias over land regions but has no effect on the phase of the diurnal cycle.en
dc.format.extent28409509 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectatmosphereen
dc.subjectmeteorologyen
dc.subjectclimateen
dc.subjectprecipitationen
dc.subjectTropicalen
dc.subjectTRMMen
dc.titleTropical precipitation simulated by the NCAR Community Climate Model (CCM3): an evaluation based on TRMM satellite measurementsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentAtmospheric Sciencesen
thesis.degree.disciplineAtmospheric Sciencesen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberNewton, H. Joseph
dc.contributor.committeeMemberWilheit, Thomas T.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record