Show simple item record

dc.contributor.advisorMartin, Amy Epps
dc.creatorKancherla, Anuroopa
dc.date.accessioned2005-11-01T15:50:04Z
dc.date.available2005-11-01T15:50:04Z
dc.date.created2004-08
dc.date.issued2005-11-01
dc.identifier.urihttps://hdl.handle.net/1969.1/2711
dc.description.abstractNumerous research efforts have been devoted to characterizing the behavior of granular materials, which is one of the main concerns of pavement engineers. For better understanding of this behavior, laboratory tests where in-situ stress conditions and traffic loads are adequately simulated are needed. This study makes use of an expanded test protocol called a performance test that includes resilient modulus as well as permanent deformation testing. This test protocol determines three nonlinear resilient modulus parameters (k1, k2, k3) and two permanent deformation parameters (?,??). The resilient modulus test results are required inputs in the Level 1 analysis of the proposed American Association of State Highway and Transportation Officials (AASHTO) Pavement Design Guide. In addition, both resilient modulus and permanent deformation test results provide material property inputs to pavement performance prediction models. This study also evaluated the within laboratory repeatability of the performance test and developed a within laboratory precision statement. Further, a statistical analysis was conducted on the test results to estimate the number of test specimens required for testing for specific reliability levels. Two test specimens are required for a reliability level of 15%. A within laboratory study was also conducted to investigate the influence of specimen size on test results. The specimen height was reduced from 12 in. (304 mm) to 8 in. (203 mm), and there was no difference in test results at a confidence level of 95%. The performance test was further used successfully in subsequent studies to evaluate the behavior of granular materials and the influence of various factors on their behavior. As fines content increased, the resilient modulus values decreased and permanent deformation increased. As the moisture content increased, the resilient modulus value decreased and the resistance to permanent deformation decreased. A simplified laboratory measurement tool that is repeatable, relatively cheap and easy to perform might prompt the use of laboratory measured values of resilient modulus in pavement design and facilitate correlation of these values to field measured values on a large scale. Use of measured data for the base properties rather than estimates would insure improved pavement designs and, in many cases, would save money in construction costs.en
dc.format.extent1268988 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectUnbound Granular Materialsen
dc.subjectResilient Modulusen
dc.subjectPermanent Deformationen
dc.subjectLaboratory Testing of Granular Basesen
dc.titleResilient modulus and permanent deformation testing of unbound granular materialsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentCivil Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberMathewson, Christopher
dc.contributor.committeeMemberLittle, Dallas N.
dc.type.genreElectronic Thesisen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record