Show simple item record

dc.contributor.advisorBrooks, Sarah D.
dc.contributor.advisorThornton, Daniel C.O.
dc.creatorMirrielees, Jessica Aileen
dc.date.accessioned2019-01-25T15:14:16Z
dc.date.available2020-08-01T06:37:20Z
dc.date.created2018-08
dc.date.issued2018-06-12
dc.date.submittedAugust 2018
dc.identifier.urihttps://hdl.handle.net/1969.1/174648
dc.description.abstractThe concentrations of cloud condensation nuclei (CCN) modulate cloud properties, rainfall location and intensity, and climate forcings. This work assesses uncertainties in CCN measurements and the apparent hygroscopicity parameter (kvapp) which is widely used to represent CCN populations in climate models. CCN measurements require accurate operation of three instruments: the CCN instrument, the differential mobility analyzer (DMA), and the condensation particle counter (CPC). Assessment of DMA operation showed that varying the ratio of aerosol to sheath flow from 0.05 to 0.30 resulted in discrepancies between the kvapp values calculated from CCN measurements and the literature values. Discrepancies were found to increase from effectively zero to 0.18 for sodium chloride, and from effectively zero to 0.08 for ammonium sulfate. The ratio of excess to sheath flow was also varied, which shifted the downstream aerosol distribution towards smaller particle diameters (for excess flow < sheath flow) or larger particle diameters (for excess flow > sheath flow) than predicted. For the CPC instrument, undercounting occurred at high concentrations, resulting in calculated kvapp lower than the literature values. Lastly, undercounting by CCN instruments at high concentration was also assessed, taking the effect of supersaturation on counting efficiency into account. Under recommended operating conditions, the combined DMA, CPC, and CCN uncertainties in kapp are 1.1 % or less for 25 to 200 nm diameter aerosols.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectaerosolen
dc.subjectcloud condensation nucleien
dc.subjectapparent hygroscopicity parameteren
dc.subjectcloudsen
dc.titleInstrument Artifacts Lead to Uncertainties in Parameterizations of Cloud Condensation Nucleationen
dc.typeThesisen
thesis.degree.departmentAtmospheric Sciencesen
thesis.degree.disciplineAtmospheric Sciencesen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberZhang, Renyi
dc.contributor.committeeMemberCollins, Donald R.
dc.contributor.committeeMemberSchade, Gunnar W.
dc.type.materialtexten
dc.date.updated2019-01-25T15:14:16Z
local.embargo.terms2020-08-01
local.etdauthor.orcid0000-0003-2678-3720


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record