Show simple item record

dc.contributor.advisorZubairy, Muhammad Suhail
dc.creatorShahrokh Esfahani, Saeideh
dc.date.accessioned2016-09-16T15:36:20Z
dc.date.available2016-09-16T15:36:20Z
dc.date.created2016-08
dc.date.issued2016-07-19
dc.date.submittedAugust 2016
dc.identifier.urihttps://hdl.handle.net/1969.1/157900
dc.description.abstractSeveral instructions need to be considered in order to transfer classical error correction techniques to the quantum regime. The quantum error correction field has been developed to face these issues. One of the common source of errors in quantum systems is environment decoherence. Due to interaction with the environment, the quantum states of a system entangle with the environment and are subject to decoherence. In this thesis, we mainly focused on the amplitude damping which is one of the most important models of decoherence processes. We showed that general two-qubit mixed states undergoing an amplitude damping, can be almost completely restored using a reversal procedure. This reversal procedure through CNOT and Hadamard gates could also protect the entanglement of two-qubit mixed states from general amplitude damping. Concurrence and fidelity are two measurements used in order to examine how our proposed scheme performs. Furthermore, to give generality to our scheme, we proposed a robust recovery scheme to protect the quantum states when the decay parameters or the input quantum states are not completely known.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectquantum informationen
dc.subjectquantum opticen
dc.subjectquantum bitsen
dc.subjectamplitude dampingen
dc.subjectmixed stateen
dc.subjecttwo qubiten
dc.titleRobust Quantum Mixed State Recovery from Amplitude Dampingen
dc.typeThesisen
thesis.degree.departmentPhysics and Astronomyen
thesis.degree.disciplinePhysicsen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameMaster of Scienceen
thesis.degree.levelMastersen
dc.contributor.committeeMemberKocharovskaya, Olga
dc.contributor.committeeMemberSokolov, Alexei
dc.contributor.committeeMemberKlappenecker, Andreas
dc.type.materialtexten
dc.date.updated2016-09-16T15:36:31Z
local.etdauthor.orcid0000-0002-7430-8919


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record