Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Development of a Robotic Simulation Platform for Spacecraft Proximity Operations and Contact Dynamics Experiments

    Thumbnail
    View/Open
    PROBE-THESIS-2013.pdf (13.36Mb)
    Date
    2013-12-03
    Author
    Probe, Austin Breien
    Metadata
    Show full item record
    Abstract
    A major challenge facing the introduction of new technologies and techniques in space flight is the high cost required to raise the Technological Readiness Level (TRL) prior to flight. This is a result of the cost and scarcity of developmental launch opportunities for verification and validation. A ground facility with the capability for six degree-of-freedom robotic spacecraft emulation that enables laboratory-based hardware-in-the-loop experiments is desired, to allow for the simulation of space- based operations for almost any mission. Such a facility would enable experiments that can be used pre-flight to reduce development cost and ensure the functionality of sensor suites with guidance, navigation, and control systems. However, a major shortfall of most robotic motion emulation systems is the inability to simulate proximity operations involving contact dynamics, due to their methods of actuation and required dynamic response time. To provide this capability at the Texas A&M Land Air and Space Robotics (LASR) Lab, a novel low-cost robotic platform called the Suspended Target Emulation Pendulum (STEP) was developed. This thesis de- tails the design, system dynamics, simulation, and control of the STEP system, and presents experimental results from an initial prototype.
    URI
    http://hdl.handle.net/1969.1/151932
    Subject
    space proximity operations
    contact dynamics
    robotic motion emulation
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Probe, Austin Breien (2013). Development of a Robotic Simulation Platform for Spacecraft Proximity Operations and Contact Dynamics Experiments. Master's thesis, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /151932.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV