Show simple item record

dc.contributor.advisorKuo, Yue
dc.creatorTewg, Jun-Yen
dc.date.accessioned2005-02-17T20:59:20Z
dc.date.available2005-02-17T20:59:20Z
dc.date.created2004-12
dc.date.issued2005-02-17
dc.identifier.urihttps://hdl.handle.net/1969.1/1346
dc.description.abstractA new high-k dielectric material, i.e., zirconium-doped tantalum oxide (Zr-doped TaOx), in the form of a sputter-deposited thin film with a thickness range of 5-100 nm, has been studied. Important applications of this new dielectric material include the gate dielectric layer for the next generation metal-oxide-semiconductor field effect transistor (MOSFET). Due to the aggressive device scaling in ultra-large-scale integrated circuitry (ULSI), the ultra-thin conventional gate oxide (SiO2) is unacceptable for many practical reasons. By replacing the SiO2 layer with a high dielectric constant material (high-k), many of the problems can be solved. In this study, a novel high-k dielectric thin film, i.e., TaOx doped with Zr, was deposited and studied. The film’s electrical, chemical, and structural properties were investigated experimentally. The Zr dopant concentration and the thermal treatment condition were studied with respect to gas composition, pressure, temperature, and annealing time. Interface layer formation and properties were studied with or without an inserted thin tantalum nitride (TaNx) layer. The gate electrode material influence on the dielectric properties was also investigated. Four types of gate materials, i.e., aluminum (Al), molybdenum (Mo), molybdenum nitride (MoN), and tungsten nitride (WN), were used in this study. The films were analyzed with ESCA, XRD, SIMS, and TEM. Films were made into MOS capacitors and characterized using I-V and C-V curves. Many promising results were obtained using this kind of high-k film. It is potentially applicable to future MOS devices.en
dc.format.extent4352230 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjecthigh-ken
dc.subjectgate dielectricen
dc.subjectdielectric materialen
dc.subjectthin filmen
dc.subjectcapacitoren
dc.subjectMOSFETen
dc.subjectULSIen
dc.subjectscalingen
dc.subjecttantalum oxideen
dc.subjectzirconium oxideen
dc.subjectdopingen
dc.subjectdielectric constanten
dc.subjectleakage currenten
dc.subjectC-Ven
dc.subjectI-Ven
dc.subjectinterface state densityen
dc.subjectgate electrodeen
dc.subjectmetal gateen
dc.subjectmetal nitride gateen
dc.subjectinterfaceen
dc.subjecttantalum nitrideen
dc.titleZirconium-doped tantalum oxide high-k gate dielectric filmsen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberHall, Kenneth R.
dc.contributor.committeeMemberWeichold, Mark H.
dc.contributor.committeeMemberEubank, Philip T.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record