Show simple item record

dc.creatorKocharovsky, VV
dc.creatorScully, Marlan O.
dc.creatorZhu, S. Y.
dc.creatorZubairy, M. Suhail
dc.date.accessioned2011-09-08T21:35:50Z
dc.date.available2011-09-08T21:35:50Z
dc.date.issued2000
dc.identifier.citationVV Kocharovsky, Marlan O. Scully, S. Y. Zhu and M. Suhail Zubairy. Phys.Rev.A 61 023609 2000. "Copyright (2000) by the American Physical Society."en
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevA.61.023609
dc.identifier.urihttps://hdl.handle.net/1969.1/126542
dc.descriptionJournals published by the American Physical Society can be found at http://publish.aps.org/en
dc.description.abstractA nonequilibrium approach to the dynamics and statistics of the condensate of an ideal N-atom Bose gas cooling via interaction with a thermal reservoir using the canonical ensemble is developed. We derive simple analytical expressions for the canonical partition function and equilibrium distribution of the number of atoms in the ground state of a trap under different approximations, and compare them with exact numerical results. The N-particle constraint associated with the canonical ensemble is usually a burden. In the words of Kittel, "in the investigation of the Bose-Einstein... laws it is very inconvenient to impose the restriction that the number of particles in the subsystem shall be held constant." But in the present approach, based on the analogy between a second-order phase transition and laser threshold behavior, the N-particle constraint makes the problem easier. We emphasize that the present work provides another example of a case in which equilibrium (detailed balance) solutions to nonequilibrium equations of motion provide a useful supplementary approach to conventional statistical mechanics. We also discuss some dynamical and mesoscopic aspects of Bose-Einstein condensation. The conclusion is that the present analytical (but approximate) results, based on a nonequilibrium approach, are in excellent agreement with exact (but numerical) results. The present analysis has much in common with the quantum theory of the laser.en
dc.language.isoen
dc.publisherAmerican Physical Society
dc.subjectEINSTEIN CONDENSATIONen
dc.subjectCRITICAL-TEMPERATUREen
dc.subjectPARTICLE NUMBERen
dc.subjectPOTENTIALen
dc.subjectTRAPen
dc.subjectHARMONIC TRAPSen
dc.subjectFINITE NUMBERen
dc.subjectFLUCTUATIONSen
dc.subjectATOMSen
dc.subjectCONFIGURATIONen
dc.subjectINTERFERENCEen
dc.subjectOpticsen
dc.subjectPhysicsen
dc.titleCondensation of N bosons. II. Nonequilibrium analysis of an ideal Bose gas and the laser phase-transition analogyen
dc.typeArticleen
local.departmentPhysics and Astronomyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record