Liquefied Natural Gas: Description, Risks, Hazards, Safeguards

Done By: Maryam Manojahri, Maha Kafood, Mateen Kamal

Outline

- Introduction
- Value Chain
- Liquefied Natural Gas Process Description
- Risks Associated with the Production process
- Safety and Risk Assessments
 - Plant Location
 - Process Operation
 - Product Storage
 - Product Shipping
- Conclusion

Introduction

- Forty years of innovative oil and gas products
- What is LNG?
 - Light Hydrocarbons fraction
 - Cooled up to -162 °C
- Why LNG?
 - Source of Gas
 - Convenience and Efficiency
 - Volume
- ▶ LNG in Qatar

Value Chain

Producing Region

Source: CMS Energy

Consuming Region

Liquefied Natural Gas (LNG) Process

Risks Associated with the Production Process

Six Hazards

- Explosion
 - Pressurized process
- Vapor Clouds
 - ▶ Handling H₂S
 - Handling Mercury
- Freezing Liquid
 - Insufficient Dehydration
- Rollover
- Rapid Phase Transition
- Terrorism

Plant Location

- Demanding location
- Far away from cities and towns
- Near sea shore
- Lack of flammability materials
 - Better desert than rainforest
- ▶ Fair distance in-between offices
- Use of simulation to aid in location selection

Locating LNG Plants: FLACS

- ▶ 1000kg/s of LNG
- cylindrical tank
- left: liquid LNG spill
- right: methane vapor cloud
- time: 200 seconds
- distance travelled: 400m

Safety in Process Operation

LNG temperature is kept by good insulation and pressure control.

▶ LNG should be stopovers of I to 2 days.

All tanks kept under cold temperature at all times.

Risk Assessment in LNG Process Operation

Hazards need to be identified and quantified by:

- Collecting from existing resources
- Identify all of the accident-initiating events
- Training
- Personal Protective Equipment (PPE)

Training

- ▶ H₂S Gas in LNG
 - Properties
 - ▶ Effect of H₂S Concentration

Material	Concentration/ppm	Time Exposure
H ₂ S	10	8 hours
	15	15 minutes
	20	No time

Several preventions were listed in companies to ensure the safety regulations for the employees.

PPE & Emergency Responses

PPE

- Definition
- Uses
- Emergency responses
 - Move to a safe area.
 - Report directly.
 - ▶ The exact location
 - ▶ The nature of the emergency
 - Individual information

Safety in LNG Storage

- Classified as either aboveground or belowground storage.
- Liquefied Natural Gas (LNG) is stored in storage tanks of around 160,000 m³ capacity.
- ▶ LNG tanks classified into three main types:
 - Single containment tanks
 - Double containment tanks
 - ▶ Full containment tanks

Single Containment Tank

Double Containment Tank

Full Containment Tank

LNG Storage Potential Hazards

- Release of a large amount of LNG due to the mechanical failures of main tank.
- ▶ The impact from "missiles" on the outer tank.
- Adjacent explosion.
- ▶ A sudden variation of atmospheric pressure.
- A tank overfilling.

LNG Ships: Main Types

LNG Ships: Statistics

Source: Maritime Business Strategies, LLC

LNG Fleet Containment System - Order Book 2005 -2010 (Number of ships)

LNG Ships: Tank Specification

Membrane Tanks

- Tank interior composed of primary and secondary thin plates (membranes) supported by rigid insulation system
- Membranes provide liquid containment but are not self-supporting
- Membranes are subjected to all fluid dynamic loadings
- Insulation simplifies design of hull and tank for thermal expansion
- Enables savings by use of ship hull structure as part of the tank
- Korea's ability to build membrane ships a primary drivers behind lowering of LNG ship costs

Moss Rosenberg Spheres

- Spherical shell provides liquid containment and carries all liquid loading
- Insulation is external to containment sphere and carries no liquid load
- Load transfer between hull and spherical shell through extruded stainless steel skirt at equator
- External shell protects insulation from elements
- Opening in hull to accommodate tanks increases hull loads / cost
- Higher ship void space than other containment types results in higher sail area and higher Suez canal tolls
- Cost competitive with membranes

Semi-Primsmatic Tanks

- Prismatic self-supporting tank located within ship's hull
- Constructed using standard shipbuilding techniques
- Interior aluminum stiffened shell provides liquid containment and carries all liquid loading
- Insulation located between tank and ship's hull is not subjected to local liquid impact
- Load transmission between interior shell structure and hull is through insulation sophisticated interface design
- Generally highest cost of the three containment systems

LNG Ships – Typical Requirements

- All ships must be capable of serving Japan market
 - Japan: ~50% of world LNG market
 - Obey Japan's maritime law
- Must have flexibility to deliver LNG to almost any other markets
- LNG ships use steam turbine drive systems
- LNG ship boil-off gas used as fuel to the boilers

LNG Ships - Scale-Up

LNG Ships: Efficiency

- Steam turbines consume boil-off gas (~3%)
- ► Fuel = 15% of shipping costs
- Alternative propulsion more efficient:
 - Steam Turbine ~30%
 - Combined Cycle Gas Turbine + Electric Motor ~40%
 - Dual-Fuel Diesel + Electric Motor ~45%
 - Slow-Speed Diesel ~50%
- Solution: slow-speed diesel + reliquefication
- Reliquefication: boil-off gas back to LNG

LNG Ships: Potential Hazards

- Asphyxiation
- Cryogenic burns
- Structural damage
- Thermal damage
- Fireballs
- Air explosions
- Rapid Phase Transitions (RPT)

LNG Ships: Safety Scenario

Conclusion

The safety record of LNG clearly indicates that LNG as a fuel is much safer than its competitors given those only seven major incidents occurred worldwide since the 1980s.

▶ The technologies and operating practices applied to creating LNG is inherently safe.

