Experimental Characterization of Pu Separation by Purex on a Low-Burnup, Pseudo-Fast-Neutron Irradiated DUO2 for Product Decontamination Factors and Nuclear Forensics
Loading...
Date
2018-02-14
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Experimental investigations to determine fission product decontamination factors while
employing the Plutonium Uranium Recovery by Extraction (PUREX) process were conducted.
PUREX process was performed for a depleted UOv2 (DUOv2) sample irradiated in
a pseudo-fast neutron environment in the High Flux Isotope Reactor (HFIR). The DUOv2
sample (0.26 wt% ^235U) was covered with gadolinium to absorb thermal neutrons and irradiated to a low-burnup (4.43 ± 0.31 GWd/tHM) and PUREX process was performed
538 days after the neutron irradiation. Decontamination factors (DF), with respect to Pu,
for the elements U, Mo, Ru, Ce, Sm, Sr, Pm, Eu, Nd, Pd, and Cd were measured with
mass spectrometry. DFs as well as distribution coefficients (DC) were determined with
gamma spectroscopy for Cs, Ru, Ce, and Eu. 30 vol.% tri-n-butyl phosphate (TBP) in a
kerosene diluent was used for U/Pu extraction and 0.024 M iron(II) sulfamate in HNO3
with concentrations ranging from 0 to 4 M was used for Pu back-extraction. The Pu in
the irradiated fuel was characterized as near-weapons-grade (89.3%^ 239Pu), with 1.5% of
the total fuel mass attributed to Pu, 86% to U, roughly 0.3% attributed to fission products
and the rest of the mass attributed to oxygen. Two cycles of a four extraction, three backextraction process achieved 93% of Pu recovered in a product solution with less than 1%
of the original U. The mathematical expression between DCs and DFs was derived for the
PUREX experiment and this expression was used to calculate DFs from DCs. The ratio
between DFs determined with DCs as opposed to direct measurement was 1.5, 1.0, 0.99,
and 0.91 for Cs, Ru, Ce, and Eu, respectively.
Further, a forensic methodology was developed for determining parameters like fuel
burnup, scalar neutron flux, neutron irradiation time in reactor, initial^ 235U enrichment, and
time since removal from the reactor. Each parameter was determined in the order listed
because information from earlier calculations was used in later calculations. The above
parameters were determined using single group neutron cross sections and fission yields
determined by averaging with five different normalized neutron flux spectra. The five reactor
flux spectra were: the initial HFIR sample flux spectrum, the Fast Breeder Reactor
(FBR) blanket region, an AP1000, a Pressurized Heavy Water Reactor (PHWR), and an
average HFIR flux spectrum. Concentrations determined at the end of the PUREX experiment
were used with DF values to calculate unprocessed concentrations, which were used
as inputs for the forensic calculation. The flux spectra input which most correctly determined
sample history among the non-averaged spectra was the AP1000, which indicates
that the sample received the majority of its burnup while in a thermal spectrum. Although
the sample was covered with gadolinium to remove the thermal flux, investigations with
MCNP revealed that the gadolinium burned out some time near the end of irradiation, and
consequently the fuel sample was irradiated for an unknown time in a thermal spectrum.
This is why the forensic calculations were completed with an average HFIR spectra, which
most correctly estimated the sample history. The calculated parameters using the average
HFIR flux spectrum estimated the sample to have a burnup of 4.42 GWd/tHM, a scalar flux
of 1.62_10^15 n/cm^2s, 45 days of irradiation, an initial uranium enrichment of 0.265 wt.%
^235U, and 356 days between removal from reactor and the analysis date. The initial scalar
flux for the sample was estimated with MCNP as 1.73_10^15 n/cm2s, there were 50 days
of irradiation, the initial uranium enrichment was 0.26 wt.% ^235U, and there were actually
355 days between removal from the reactor and the analysis date. The 6% difference in
scalar flux estimates is likely due to the changing flux spectra during irradiation.
Description
Keywords
disdain