Machine learning-based framework to predict single and multiple daylighting simulation outputs using neural networks
dc.contributor.author | Rania Labib | |
dc.creator | Labib, Rania | |
dc.date.accessioned | 2025-01-02T18:52:10Z | |
dc.date.available | 2025-01-02T18:52:10Z | |
dc.date.issued | 2021-09-01 | |
dc.identifier.issn | 2522-2708 | |
dc.identifier.uri | http://hdl.handle.net/1969.1/1582384 | |
dc.publisher | KU Leuven | |
dc.relation.ispartof | Building Simulation Conference Proceedings | |
dc.relation.ispartof | Proceedings of Building Simulation 2021: 17th Conference of IBPSA | |
dc.relation.ispartofseries | Proceedings of Building Simulation 2021; 17th Conference of IBPSA. Pages 1334 - 1340 | |
dc.rights | CC0 1.0 Universal | en |
dc.rights.uri | http://creativecommons.org/publicdomain/zero/1.0/ | |
dc.subject | Machine Learning | |
dc.subject | Daylighting Simulations | |
dc.subject | Artificial Intelligence | |
dc.subject | Building Performance Simulations | |
dc.title | Machine learning-based framework to predict single and multiple daylighting simulation outputs using neural networks | |
dc.type | proceedings-article | |
local.department | Architecture |