Plant responses to phosphorus-deficiency stress: the role of organic acids in P mobilization from iron oxide and P acquisition by sorghum
Date
1999
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Texas A&M University
Abstract
Phosphate deficiency is frequently a limiting factor in crop production on acid soils due to the tendency of iron oxides to strongly bind phosphate through inner-sphere ligand adsorption. Two of the reported responses of some plants to P-deficiency stress are organic-acid exudation from the roots and increased phosphatase activity. Organic-acid-induced P release from iron-oxide surfaces was studied using synthetic iron oxides. The amounts of P released and Fe dissolved from ferrihydrite and goethite at pH 4.0, 5.5, and 7.0 by citric, malic, melodic, oxalic, succinct, and tartaric acids were measured. At low initial P-adsorption levels, ligand-induced dissolution of the oxide surface as the primary mechanism of P release from oxides was supported by the strong positive relationship between Fe dissolved and P released. At higher initial P-adsorption levels, ligand exchange played a greater role in P release. Ten cultivate of sorghum exhibiting a range of P efficiencies were obtained from EMBRAPA in Brazil and tested for organic-acid exudation and phosphatase activity under P-deficiency stress in hydroponic culture. HPLC analysis of root exudates revealed increases in oxalate and succinate under P- deficient conditions, with significant differences between cultivate. There was no evidence of citrate in the root exudates at either P level. Western blots using arabidopsis purple acid-phosphatase antibodies revealed varying increases in phosphatase activity under P deficiency among the different cultivate. It was concluded that organic-acid exudation might not be expected to significantly improve P uptake by plants grown on weathered soils dominated by well crystalline iron oxide under low P-fertility conditions. Under higher initial P-feritility conditions, organic-acid exudation might play a greater role in plant P acqusitions.
Description
Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.
Includes bibliographical references (leaves 129-134).
Issued also on microfiche from Lange Micrographics.
Includes bibliographical references (leaves 129-134).
Issued also on microfiche from Lange Micrographics.
Keywords
soil science., Major soil science.