Autoinducer 2-based quorum sensing response of Escherichia coli to sub-therapeutic tetracycline exposure
Loading...
Date
2006-10-30
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Texas A&M University
Abstract
Autoinducer 2 (AI-2) is a quorum sensing signal employed by bacteria to coordinate
their response to environmental stresses. The objective of this study was to determine the
relationship between presence of AI-2 molecules, exposure to sub-therapeutic tetracycline,
the expression of genes associated with the conjugal transfer of antibiotic resistance
plasmids, and the conjugal transfer of these plasmids in Escherichia coli. The studies showed
that AI-2 activity increased in Tets E. coli in the presence of tetracycline (2 õg/mL) under
both batch and continuous culture conditions. The presence of AI-2 molecules induced
tetracycline tolerance development in Tets E. coli. The studies showed that the survival rates
of Tets E. coli exposed to AI-2 molecules were significantly higher compared to the cells not
exposed to AI-2 molecules or cells that were exposed to only LB (Lauria-Bertani) broth.
Molecular analyses using real-time PCR indicate that the expression of at least one
conjugation-associated gene (trbC) is increased 9-fold in cells exposed to AI-2 molecules in
the presence of sub-therapeutic tetracycline compared to its negative controls. The
transconjugation frequency of the plasmid RP4 carrying the tet(A) gene increased between
10-100 fold in the presence of AI-2 molecules. In companion studies, AI-2-like activity was
detected in fish, tomatoes, cantaloupes, carrots and milk samples. Interestingly, ground beef
and poultry meat contained substances that appear to inhibit AI-2 activity. Collectively, these results highlight the potential importance of bacterial quorum sensing signals such as AI-2 in
the response of bacterial cells to environmental stimuli and the possible role of quorum
sensing signals in the quality and safety of foods.
Description
Keywords
quorum sensing, Autoinducer, tetracycline resistance, sub-therapeutic, transconjugation, RP4, tet(A), Escherichia coli, food, airborne quorum sensing, microflora, Real-time PCR