Trade-off Method to Assess the Interaction Between Lightshelves and Complex Ceiling Forms for Optimized Daylighting Performance
Loading...
Date
2013-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The 9th International ENERGY FORUM on Advanced Building Skins
Abstract
Recent research has shown that ceiling geometry can greatly affect the illuminance levels and daylighting
uniformity in indoor spaces. Usually, modeling and evaluating the daylighting performance of flat
ceilings and light shelves can be done easily. However, with the increase of sophisticated and complex
parametric forms of suspended ceilings, architects have been struggling to adequately assess their daylight
performance. This is mainly due to the time and effort required to examine all parameters within the ceiling
form. Additionally, most available architectural tools for examining parametric ceilings are based on the
use of Genetic Algorithm (GA), which proves to be an efficient way to search for an optimal solution but
lacks the ability of providing the designer with multiple sets of alternatives for better decision making. In
response, this paper examines a workflow based on the use of the Pareto principle that has been developed
in order to assess the ceiling parameters and variables. It then ranks them according to their performance
in search for optimized configurations that allow architects and designers a trade-off in the early design
stage. Then, the paper will introduce a parameters elimination method to decrease the time required for
daylighting simulations when new parameters are added to a ceiling that has been analyzed.
Description
Keywords
Daylighting, Glare, Building Performance Simulations, Radiance, Tradeoff