Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method

    Thumbnail
    View/Open
    LEE-THESIS.pdf (6.131Mb)
    Date
    2011-10-21
    Author
    Lee, Byungtark
    Metadata
    Show full item record
    Abstract
    In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under this circumstance relies on generation and stimulation of a fracture network. This thesis presents numerical simulation of the response of a fractured rock to injection and extraction considering the role of poro-thermoelasticity and joint deformation. Fluid flow and heat transport in the fracture are treated using a finite difference method while the fracture and rock matrix deformation are determined using the displacement discontinuity method (DDM). The fractures response to fluid injection and extraction is affected both by the induced stresses as well as by the initial far-field stress. The latter is accounted for using the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in equilibrium with the in-situ stress state. The fully coupled DDM simulation has been used to carry out several case studies to model the fracture response under different injection/extractions, in-situ stresses, joint geometries and properties, for both equilibrium and non-equilibrium conditions. The following observations are made: i) Fluid injection increases the pressure causing the joint to open. For non-isothermal injection, cooling increases the fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-equilibrium condition), permanent shear slip is encountered on all fracture segments when the shear strength is overcome by shear stress in response to fluid injection. With cooling operation, the fracture segments in the vicinity of the injection point are opened due to cooling-induced tensile stress and injection pressure, and all the fracture segments experience slip. iii) Fluid pressure in fractures increases in response to compression. The fluid compressibility and joint stiffness play a role. iv) When there are injection and extraction in fractured reservoirs, the cooler fluid flows through the fracture channels from the injection point to extraction well extracting heat from the warmer reservoir matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures and thus increases the fracture conductivity. v) Injection decreases the amount of effective stress due to pressure increase in fracture and matrix near a well. In contrast, extraction increases the amount of effective stress due to pressure drop in fracture and matrix.
    URI
    https://hdl.handle.net/1969.1/ETD-TAMU-2011-08-10100
    Subject
    Geomechanics
    Numerical Simulation
    Petroleum Engineering
    Numerical Investigation
    Enhanced Geothermal System (EGS)
    Naturally Fractured Reservoir
    Permeability
    Fracture aperture
    Injection/Extraction
    Displacement Discontinuity Method (DDM)
    Finite Difference Method FDM)
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Lee, Byungtark (2011). Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method. Master's thesis, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /ETD -TAMU -2011 -08 -10100.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV