Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    On Parametric and Nonparametric Methods for Dependent Data

    Thumbnail
    View/Open
    BANDYOPADHYAY-DISSERTATION.pdf (497.0Kb)
    Date
    2011-10-21
    Author
    Bandyopadhyay, Soutir
    Metadata
    Show full item record
    Abstract
    In recent years, there has been a surge of research interest in the analysis of time series and spatial data. While on one hand more and more sophisticated models are being developed, on the other hand the resulting theory and estimation process has become more and more involved. This dissertation addresses the development of statistical inference procedures for data exhibiting dependencies of varied form and structure. In the first work, we consider estimation of the mean squared prediction error (MSPE) of the best linear predictor of (possibly) nonlinear functions of finitely many future observations in a stationary time series. We develop a resampling methodology for estimating the MSPE when the unknown parameters in the best linear predictor are estimated. Further, we propose a bias corrected MSPE estimator based on the bootstrap and establish its second order accuracy. Finite sample properties of the method are investigated through a simulation study. The next work considers nonparametric inference on spatial data. In this work the asymptotic distribution of the Discrete Fourier Transformation (DFT) of spatial data under pure and mixed increasing domain spatial asymptotic structures are studied under both deterministic and stochastic spatial sampling designs. The deterministic design is specified by a scaled version of the integer lattice in IRd while the data-sites under the stochastic spatial design are generated by a sequence of independent random vectors, with a possibly nonuniform density. A detailed account of the asymptotic joint distribution of the DFTs of the spatial data is given which, among other things, highlights the effects of the geometry of the sampling region and the spatial sampling density on the limit distribution. Further, it is shown that in both deterministic and stochastic design cases, for "asymptotically distant" frequencies, the DFTs are asymptotically independent, but this property may be destroyed if the frequencies are "asymptotically close". Some important implications of the main results are also given.
    URI
    https://hdl.handle.net/1969.1/ETD-TAMU-2010-08-8277
    Subject
    Bootstrap
    Mean squared prediction error
    second order bias correction
    tilting
    Asymptotic independence
    Central limit theorem
    DFT
    Random field
    Spatial processes
    Spatial design.
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Bandyopadhyay, Soutir (2010). On Parametric and Nonparametric Methods for Dependent Data. Doctoral dissertation, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /ETD -TAMU -2010 -08 -8277.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV