Show simple item record

dc.creatorJohnson, Derrell W.
dc.date.accessioned2012-06-07T22:56:11Z
dc.date.available2012-06-07T22:56:11Z
dc.date.created1999
dc.date.issued1999
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1999-THESIS-J59
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references (leaves 70-73).en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractThe impact of nonlinear effects in the asymmetric catalysis of kinetic resolutions is analyzed. It is found with minimal assumptions that the kinetics of homocompetitive reactions should apply generally to kinetic resolutions involving partially resolved catalysts, and this is supported by experimental observations with the Jacobsen hydrolytic kinetic resolution (HKR) of epoxides. The criterion for a nonlinear effect in asymmetric catalysis--a nonlinear correlation between the enantiomeric excess in a choral ligand and the product enantiomeric excess obtained from a reaction--is examined. The nonlinear effect idea is found to be generalizable to kinetic resolutions and other reactions by replacing consideration of the product enantiomeric excess with the quantity (k[]/k[]-1)/(k[]/k[]+1), a differential kinetic enantiomeric enhancement (DKEE). A nonlinear effect may then be defined by a nonlinear correlation between the DKEE and the chiral ligand enantiomeric excess. The application of these ideas to previously reported kinetic resolutions of sulfoxides and to nonlinear effects in the Jacobsen HKR is described. Relatively small nonlinear effects in kinetic resolutions are sufficient to obtain large asymmetric amplifications. A catalyst modification in the Jacobsen HKR also allows for the development of a novel recyclable system for the iterative enhancement of optical activity.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectchemistry.en
dc.subjectMajor chemistry.en
dc.titleNonlinear effects in kinetic resolutionsen
dc.typeThesisen
thesis.degree.disciplinechemistryen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access