Show simple item record

dc.creatorWatt, James Bonner
dc.date.accessioned2012-06-07T22:51:03Z
dc.date.available2012-06-07T22:51:03Z
dc.date.created1997
dc.date.issued1997
dc.identifier.urihttps://hdl.handle.net/1969.1/ETD-TAMU-1997-THESIS-W19
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references: p.165-171.en
dc.descriptionIssued also on microfiche from Lange Micrographics.en
dc.description.abstractA split-system direct-expansion air conditioner was used to empirically determine temperature and return-air humidity indicators that could detect performance degradation resulting from degraded conditions. The air conditioner test bench was equipped with the ability to use either a short-tube orifice (STO) or a thermal expansion valve (TXV). The degraded conditions studied include low evaporator airflow, high and low-charge, and a blocked condenser coil. The work presented in this thesis is experimentally based which could identify degraded effects that fall outside of a simulation-based approach. It sought to utilize only low-cost temperature sensing means, although return-air humidity was an important factor for obtaining early detection over a wide range of operating conditions. It was empirically based rather than model based to reduce computation time with a real-time processor. Further, the current work differentiated between a system that uses a shorttube orifice (STO), or fixed-orifice expansion, and a system that uses a thermal expansion valve (TXV), or variable-orifice expansion. This thesis shows that low-cost temperature sensors could be used to detect the degraded conditions studied. However, it is also shown that indicators of low evaporator airflow depend on three loading factors; outdoor-air temperature, return-air temperature, and return-air humidity. In the literature, the humidity sensing point has been neglected by automated detection systems for failures and degraded conditions of low-tonnage air conditioners. The effects of the loading factors on the indicators relative to improper charge and a blocked condenser coil were not studied. STO system and a TXV system relative to the degradations studied, a common set of indicators was identified that could detect degraded conditions without regard to the expansion device.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectmechanical engineering.en
dc.subjectMajor mechanical engineering.en
dc.titleDevelopment of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditionersen
dc.typeThesisen
thesis.degree.disciplinemechanical engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access