Show simple item record

dc.creatorCarlisle, Bruce Scott
dc.date.accessioned2012-06-07T22:35:46Z
dc.date.available2012-06-07T22:35:46Z
dc.date.created1994
dc.date.issued1994
dc.identifier.urihttp://hdl.handle.net/1969.1/ETD-TAMU-1994-THESIS-C283
dc.descriptionDue to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to digital@library.tamu.edu, referencing the URI of the item.en
dc.descriptionIncludes bibliographical references.en
dc.description.abstractThough both film and video radiographic image techniques are available in neutron radiography, radiographic cameras are commonly used to capture the dynamic flow patterns in a rapid sequence of images. These images may be useful to verify two-phase flow models in small diameter flow channels. An initial series of real-time neutron radiography experiments were performed at the Texas A&M University System, Texas Engineering Experiment Station, Nuclear Science Center Reactor (NSCR) to determined the image resolution of two-phase water and air flow regimes through small diameter metal flow channels. After evaluating these initial images, research was conducted to determine cost effective enhancements that would increase the dimensional accuracy and contrast of these flow images. Modifications were completed to the beam collimator and the radiography camera video processing board was realigned to provide a stronger vidio signal with less noise. Several hydrogenous-media reference standards were designed and constructed to evaluate the effectiveness of the modifications. The beamport collimator was redesigned and the radiography calibration methodology was changed. The post-modification images demonstrate that a smaller, more focused neutron beam and a more sensitive video camera provide clearer images with excellent dimensional characteristics. Specific research to quantify both the resolution and sensitivity limits is proposed and a change in dynamic target imaging methodology is proposed.en
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.rightsThis thesis was part of a retrospective digitization project authorized by the Texas A&M University Libraries in 2008. Copyright remains vested with the author(s). It is the user's responsibility to secure permission from the copyright holder(s) for re-use of the work beyond the provision of Fair Use.en
dc.subjectnuclear engineering.en
dc.subjectMajor nuclear engineering.en
dc.titleAn evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluidsen
dc.typeThesisen
thesis.degree.disciplinenuclear engineeringen
thesis.degree.nameM.S.en
thesis.degree.levelMastersen
dc.type.genrethesisen
dc.type.materialtexten
dc.format.digitalOriginreformatted digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

This item and its contents are restricted. If this is your thesis or dissertation, you can make it open-access. This will allow all visitors to view the contents of the thesis.

Request Open Access