Show simple item record

dc.contributor.advisorMannan, M. Sam
dc.creatorWei, Chunyang
dc.date.accessioned2006-10-30T23:23:20Z
dc.date.available2006-10-30T23:23:20Z
dc.date.created2005-08
dc.date.issued2006-10-30
dc.identifier.urihttps://hdl.handle.net/1969.1/4154
dc.description.abstractChemical reactivity hazards have posed a significant challenge for industries that manufacture, store, and handle reactive chemicals. Without proper management and control of reactivity, numerous incidents have caused tremendous loss of property and human lives. The U.S. Chemical Safety and Hazard Investigation Board (CSB) reported 167 incidents involving reactive chemicals that occurred in the U.S. from 1980 to 2001. According to the report, 35 percent of the incidents were caused by thermal runaway reactions, such as incidents that involved hydroxylamine and hydroxylamine nitrate. The thermal stability of hydroxylamine system under various industrial conditions was studied thoroughly to develop an understanding necessary to prevent recurrence of incidents. The macroscopic runaway reaction behavior of hydroxylamine system was analyzed using a RSST (Reactive System Screening Tool) and an APTAC (Automatic Pressure Tracking Calorimeter). Also, computational chemistry was employed as a powerful tool to evaluate and predict the measured reactivity. A method was proposed to develop a runaway reaction mechanism that provides atomic level ofinformation on elementary reaction steps, in terms of reaction thermochemistry, activation barriers, and reaction rates. This work aims to bridge molecular and macroscopic scales for process safety regarding reactive chemicals and to understand macroscopic runaway reaction behaviors from a molecular point of view.en
dc.format.extent1946091 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectRunaway reactionen
dc.subjectcalorimeteren
dc.subjectquantum mechanical calculationen
dc.titleThermal runaway reaction hazard and decomposition mechanism of the hydroxylamine systemen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberEl-Halwagi, Mahmoud
dc.contributor.committeeMemberFord, David M.
dc.contributor.committeeMemberHall, Michael B.
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record