Show simple item record

dc.contributor.advisorWright, Stevenen_US
dc.creatorMcDougall, Mary Prestonen_US
dc.date.accessioned2006-04-12T16:06:34Z
dc.date.available2006-04-12T16:06:34Z
dc.date.created2004-12en_US
dc.date.issued2006-04-12
dc.identifier.urihttp://hdl.handle.net/1969.1/3324
dc.description.abstractThe dramatic improvement in magnetic resonance imaging (MRI) scan time over the past fifteen years through gradient-based methods that sample k-space more efficiently and quickly cannot be sustained, as thresholds regarding hardware and safety limitations are already being approached. Parallel imaging methods (using multiple receiver coils to partially encode k-space) have offered some relief in the efforts and are rapidly becoming the focus of current endeavors to decrease scan time. Ideally, for some applications, phase encoding would be eliminated completely, replaced with array coil encoding instead, and the entire image formed in a single echo. The primary objective of this work was to explore that acceleration limit – to implement and investigate the methodology of single echo acquisition magnetic resonance imaging (SEA MRI). The initial evaluation of promising array coil designs is described, based on parameters determined by the ability to enable the imaging method. The analyses of field patterns, decoupling, and signal-to-noise ratio (SNR) that led to the final 64-channel array coil design are presented, and the fabrication and testing of coils designed for 4.7T and 1.5T are described. A detailed description of the obtainment of the first SEA images – 64xNreadout images, acquired in a single echo – is provided with an evaluation of those images and highly accelerated images (through parallel imaging techniques) based on SNR and artifact power. Finally, the development of methodologies for various MR applications is described: applications that would particularly benefit from the speed of the imaging method, or those to which the method or the tool (array coil) lends itself. These applications include, but are not limited to, 3D imaging (phase encode in the slice select direction), resolution-enhanced imaging, large-scale (field-of-view) microscopy, and conformal surface imaging. Finally, using the primary enablement of the method – the ability to obtain complete MR images at speeds limited only by the time it takes to acquire a single echo – is presented with a discussion of extremely high frame rate imaging. The contribution to the field of medical imaging is the first implementation, characterization, and demonstration of applications for the acquisition of MR images in a single echo.en_US
dc.format.extent6975554 bytes
dc.format.mediumelectronicen_US
dc.format.mimetypeapplication/pdf
dc.language.isoen_USen_US
dc.publisherTexas A&M Universityen_US
dc.subjectmagnetic resonance imaging (MRI)en_US
dc.subjectbiomedical imagingen_US
dc.subjectcoil arraysen_US
dc.subjectdynamic imagingen_US
dc.titleSingle echo acquisition magnetic resonance imagingen_US
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentElectrical Engineeringen_US
thesis.degree.disciplineElectrical Engineeringen_US
thesis.degree.grantorTexas A&M Universityen_US
thesis.degree.nameDoctor of Philosophyen_US
thesis.degree.levelDoctoralen_US
dc.contributor.committeeMemberHumphrey, Jayen_US
dc.contributor.committeeMemberWang, Lihongen_US
dc.contributor.committeeMemberNevels, Roberten_US
dc.type.genreElectronic Dissertationen_US
dc.type.materialtexten_US
dc.format.digitalOriginborn digitalen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record