Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Nested Parallelism with Algorithmic Skeletons

    Thumbnail
    View/Open
    MAJIDI-THESIS-2020.pdf (606.9Kb)
    Date
    2020-07-23
    Author
    Majidi, Alireza
    Metadata
    Show full item record
    Abstract
    New trend in design of computer architectures, from memory hierarchy design to grouping computing units in different hierarchical levels in CPUs, pushes developers toward algorithms that can exploit these hierarchical designs. This trend makes support of nested-parallelism an important feature for parallel programming models. It enables implementation of parallel programs that can then be mapped onto the system hierarchy. However, supporting nested-parallelism is not a trivial task due to complexity in spawning nested sections, destructing them and more importantly communication between these nested parallel sections. Structured parallel programming models are proven to be a good choice since while they hide the parallel programming complexities from the programmers, they allow programmers to customize the algorithm execution without going through radical changes to the other parts of the program. In this thesis, nested algorithm composition in the STAPL Skeleton Library (SSL) is presented, which uses a nested dataflow model as its internal representation. We show how a high level program specification using SSL allows for asynchronous computation and improved locality. We study both the specification and performance of the STAPL implementation of Kripke, a mini-app developed by Lawrence Livermore National Laboratory. Kripke has multiple levels of parallelism and a number of data layouts, making it an excellent test bed to exercise the effectiveness of a nested parallel programming approach. Performance results are provided for six different nesting orders of the benchmark under different degrees of nested-parallelism, demonstrating the flexibility and performance of nested algorithmic skeleton composition in STAPL .
    URI
    https://hdl.handle.net/1969.1/192619
    Subject
    Algorithmic Skeletons
    Nested Parallelism
    Parallel Computing
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Majidi, Alireza (2020). Nested Parallelism with Algorithmic Skeletons. Master's thesis, Texas A&M University. Available electronically from https : / /hdl .handle .net /1969 .1 /192619.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV