Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of Parallel Approximate Ideal Restriction Multigrid for Transport Applications

    Thumbnail
    View/Open
    HANOPHY-THESIS-2019.pdf (7.258Mb)
    Date
    2019-04-18
    Author
    Hanophy, Joshua Thomas
    Metadata
    Show full item record
    Abstract
    Algebraic multigrid (AMG) methods have been widely used to solve systems arising from the discretization of elliptic partial differential equations. In serial, AMG algorithms scale linearly with problem size. In parallel, communication costs scale logarithmically with the number of processors. Recently, a classical AMG method based on approximate ideal restriction (AIR) was developed for nonsymmetric matrices. AIR has already been shown to be effective for solving the linear systems arising from upwind discontinuous Galerkin (DG) finite element discretization of advection-diffusion problems, including the hyperbolic limit of pure advection. A new parallel version of AIR, pAIR, has been implemented in the hypre library. In this thesis, pAIR is tested for use solving the source iteration equations of the SN approximations to the transport equation. The performance is investigated with various meshes in two and three dimensions. Detailed profiling of parallel performance is also conducted to identify the most important areas for algorithm improvements. An improvement to the Local Ideal Approximate Restriction algorithm is introduced and discussed. Weak scaling results to 4,096 processors are presented. These results show total solve growing logarithmically with the number of processors used. Importantly, this result is shown on both uniform grids and unstructured grids in three dimensions. The unstructured mesh did not include reentrant cells.
    URI
    http://hdl.handle.net/1969.1/187540
    Subject
    transport
    multigrid
    parallel multigrid
    AMG
    Approximate Ideal Restriction
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Hanophy, Joshua Thomas (2019). Performance of Parallel Approximate Ideal Restriction Multigrid for Transport Applications. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /187540.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV