Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    The full text of this item is not available at this time because the student has placed this item under an embargo for a period of time. The Libraries are not authorized to provide a copy of this work during the embargo period, even for Texas A&M users with NetID.

    Evaluation of Flight Control Techniques Using Virtual Reality in an Artificial Gravity Rotating Environment

    Thumbnail
    View/Open
    HOGAN-THESIS-2019.pdf (2.824Mb)
    Date
    2019-07-17
    Author
    Hogan, Robert Dallas
    Metadata
    Show full item record
    Abstract
    The purpose of this thesis is to develop a collaborative virtual reality (VR) engineering platform for space system and mission design and to demonstrate its utility in the context of evaluating human interfaces for future control systems. Much of the work for this project was the development of the platform itself (called SpaceCRAFT). Additionally, a user study was done with 33 subjects to examine the potential advantages of designing and testing systems in virtual environments that otherwise may be difficult to replicate on Earth. The task evaluated was flying a drone in a rotating artificial gravity environment, which involves numerous unfamiliar forces. Different control strategies were tested using VR in comparison to flat screen interfaces. This particular challenge was chosen to emphasize the difference between immersive and non-immersive environments, and the results demonstrate that VR is a promising tool for human-interface system design and evaluation. The 50-meter radius space station simulated an open-air, long-term habitable environment and was designed with considerations of human factors for rotating reference frames. A quadrotor control model was developed and simulated a variety of stabilization and sensitivity modes. Subjects piloted the drone through an obstacle course to evaluate flight characteristics for each configuration. The Modified Cooper-Harper Rating Scale for Handling Qualities was used to measure participants’ subjective rating of these characteristics. The average rating on the 10-point scale was 0.24 points better using VR over traditional monitor viewing. Objective performance based on displacements from the path was measured to be up to 11% more favorable for VR with 95% confidence. Both of these results indicate advantages for user preference and user performance while utilizing immersive simulations. No notable correlations were found between experience levels.
    URI
    http://hdl.handle.net/1969.1/186587
    Subject
    Virtual Reality
    Space System Design
    Space Mission Analysis
    Flight Control Systems
    Artificial Gravity
    Quadrotor
    User Study
    Modified Cooper-Harper
    Unreal Engine 4
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Hogan, Robert Dallas (2019). Evaluation of Flight Control Techniques Using Virtual Reality in an Artificial Gravity Rotating Environment. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /186587.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV