Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Design Optimization of Folding Solar Powered Autonomous Underwater Vehicles Using Origami Structure

    Thumbnail
    View/Open
    HUR-THESIS-2017.pdf (3.879Mb)
    Date
    2017-07-31
    Author
    Hur, Doe Young
    Metadata
    Show full item record
    Abstract
    Origami, as an application for morphing structure engineering, which has been studied for a long time, has recently made remarkable progress in terms of technology. The most distinctive feature of this technology is the presence of two types, flat mode and folded mode. The origami algorithm enables the conversion of these two modes based on the mathematical formulations. Completion of this algorithm now means that origami is part of the design process and can be applied to applications. This thesis demonstrates a design process for origami-inspired morphing structures that transform between a flat configuration and a folded convex shape. There are many obstacles in the development of the design process. In particular, consideration should be given to the surface difference of the flat configuration and the folded convex mode. In this thesis, I introduce the design process which takes into consideration the origami structure design deeply. To demonstrate this process, I have selected an application which is emerging and interesting, that is, unmanned vehicles. Especially, the design of Autonomous Underwater Vehicles (AUVs) is a difficult challenge since it requires the consideration of various aspects such as mission range, controllability, energy source, and carrying capacity. The Predictive Parameterized Pareto Genetic Algorithm (P3GA) is selected as the optimization method to determine a parameterized Pareto frontier of design options with desired characteristics for a variety of missions for the AUV.
    URI
    http://hdl.handle.net/1969.1/165844
    Subject
    Design Optimization
    Origami
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Hur, Doe Young (2017). Design Optimization of Folding Solar Powered Autonomous Underwater Vehicles Using Origami Structure. Master's thesis, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /165844.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV