Show simple item record

dc.contributor.advisorEntesari, Kamran
dc.creatorMoslehi Bajestan, Masoud
dc.date.accessioned2016-05-04T13:19:26Z
dc.date.available2016-05-04T13:19:26Z
dc.date.created2015-12
dc.date.issued2015-08-31
dc.date.submittedDecember 2015
dc.identifier.urihttps://hdl.handle.net/1969.1/156383
dc.description.abstractBroadband dielectric spectroscopy has proven to be a valuable technique for characterization of chemicals and biomaterials. It has the great potential to become an indispensable and cost-effective tool in point-of-care medical applications due to its label-free and non-invasive operation. However, most of the existing dielectric spectroscopy instruments require bulky, heavy and expensive measurement set-up, restricting their use to only special applications in industry and laboratories. Therefore, integrated dielectric spectroscopy on silicon capable of direct detection of chemicals/biomaterials' complex permittivity can yield significant cost and size reduction, system integration, portability, enormous processing, and high throughput. A CMOS wideband dielectric spectroscopy system is proposed for chemical and biological material characterization. The complex permittivity detection is performed using a configurable harmonic-rejecting receiver capable of indirectly measuring the complex admittance of sensing capacitor exposed to the material-under-test (MUT) and subject to RF signal excitation with a frequency range of 0.62-10 GHz. The sensing capacitor is embedded in a voltage divider topology with a fixed capacitor and the relative variations in the magnitude and phase of the voltages across the capacitors are used to find the real and imaginary parts of the permittivity. The sensor achieves an rms permittivity error of less than 1% over the entire operation bandwidth. Using a sub-harmonic mixing scheme, the system can perform complex permittivity measurements from 0.62 to 10 GHz while requiring an input signal source with frequency range of only from 5 to 10 GHz. Thereby, the permittivity measurement system can be easily made self-sustained by implementing a 5-10 GHz frequency synthesizer on the same chip. One of the key building blocks in such a frequency synthesizer is the voltage-controlled oscillator (VCO) which has to cover an octave of frequency range. A novel low-phase-noise wide-tuning range VCO is presented using a triple-band LC resonator. The implemented VCO in 0.18μm CMOS technology achieves a continuous tuning range of 86.7% from 5.12 GHz to 12.95 GHz while drawing 5 to 10 mA current from 1-V supply. The measured phase noise at 1 MHz offset from carrier frequencies of 5.9, 9.12 and 12.25 GHz is -122.9, -117.1 and -110.5 dBc/Hz, respectively. Also, a dual-band quadrature voltage-controlled oscillator (QVCO) is presented using a transformer-based high-order LC-ring resonator which inherently provides quadrature signals without requiring noisy coupling transistors as in traditional approaches. The proposed resonator shows two possible oscillation frequencies which are exploited to realize a wide-tuning range QVCO employing a mode-switching transistor network. Due to the use of transformers, the oscillator has minimal area penalty compared to the conventional designs. The implemented prototype in a 65-nm CMOS process achieves a continuous tuning range of 77.8% from 2.75 GHz to 6.25 GHz while consuming 9.7 to 15.6 mA current from 0.6-V supply. The measured phase noise figure-of-merit (FoM) at 1 MHz offset ranges from 184 dB to 188.2 dB throughout the entire tuning range. The QVCO also exhibits good quadrature accuracy with 1.5º maximum phase error and occupies a relatively small silicon area of 0.35 mm^2.en
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectBroadband dielectric spectroscopyen
dc.subjectcapacitive sensoren
dc.subjectCMOSen
dc.subjectcomplex permittivityen
dc.subjectharmonic rejectionen
dc.subjectvoltage-controlled oscillator (VCO)en
dc.subjectlow phase noiseen
dc.subjectwide tuning range.en
dc.titleNovel RF CMOS Integrated Circuits and Systems for Broadband Dielectric Spectroscopyen
dc.typeThesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectrical Engineeringen
thesis.degree.grantorTexas A & M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberPalermo, Sam
dc.contributor.committeeMemberZou, Jun
dc.contributor.committeeMemberEl-Halwagi, Mahmoud
dc.type.materialtexten
dc.date.updated2016-05-04T13:19:26Z
local.etdauthor.orcid0000-0002-0818-9878


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record