Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Characteristics of Indoor Disaster Environments and their impact on Simultaneous Localization and Mapping for Small Unmanned Aerial Systems

    Thumbnail
    View/Open
    AGARWAL-THESIS-2015.pdf (8.962Mb)
    Date
    2015-07-30
    Author
    Agarwal, Siddharth
    Metadata
    Show full item record
    Abstract
    This thesis explores the use of small unmanned aerial systems (SUASs) for mapping of unknown disaster environments and investigates the impact of characteristics of such challenging environments on simultaneous localization and mapping (SLAM) algorithm. It provides a formal analysis of indoor disaster environments and identifies four characteristics of a region of space: scale, degree of deconstruction, location of obstacles, and tortuosity. The analysis compares the value of these characteristics for Prop 133 at Disaster City and develops computer simulated environments. Furthermore, a SLAM algorithm for SUAS flying in indoor disaster environments is developed and the system is tested in these virtual environments. Three different environments with increasing deconstruction are designed. For each type of environment, 10 different maps with a common floor plan are simulated with randomly placed obstacles. For each map, three trials with varying flight paths are run, thus conducting 90 trials of experimentation. As verified from the statistical testing, there is a convincing increase of 26.36% in the average value of RMSE as the deconstruction changes from Group 1 to Group 3. But, the change in value of error is not statistically convincing when Group 1 and 2 and, Group 2 and 3 are respectively compared. Hence, though the result suggest that the value of error increases between different groups, it cannot be claimed that the RMSE in localization will always increase with deconstruction. The tortuosity increases with deconstruction and this value is empirically calculated. The average RMSE in localization does not change as the Agent to Environment ratio changes. These results can help identify the remaining gaps in the state of the art indoor SUAS for disasters.
    URI
    http://hdl.handle.net/1969.1/155690
    Subject
    unmanned aerial system
    SUAS
    localization
    mapping
    SLAM
    navigation
    disaster
    clutter
    characteristic
    simulation
    indoor
    environment
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Agarwal, Siddharth (2015). Characteristics of Indoor Disaster Environments and their impact on Simultaneous Localization and Mapping for Small Unmanned Aerial Systems. Master's thesis, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /155690.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV