Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A New Method to Assess Best Management Practice Efficiency to Optimize Storm Water Management

    Thumbnail
    View/Open
    TU-DISSERTATION-2014.pdf (3.320Mb)
    SWMMmod.zip (192.6Kb)
    Date
    2014-12-16
    Author
    Tu, Min-cheng
    Metadata
    Show full item record
    Abstract
    For TSS, TN, and TP, this study examined the relationship between BMP pollutant removal efficiency and environmental factors such as ratio of BMP/catchment area, dominant land use, ratio of the dominant land use/catchment area, slope, and BMP type, and derived optimal installation plans based on different criteria. A SWMM model was built for the Shoal Creek Watershed in Austin, Texas. Inverse modeling (i.e. fitting model to observation data) was used to calibrate the BMP removal efficiency. The relationship can then be derived by using multiple linear regression analysis with BMP removal efficiency as the response variable and the environmental factors as predictive variables. However, before inverse modeling can be applied, SWMM pollutant buildup and washoff parameters must be derived. A few types of land use were identified as main source of pollutant. The numerical distribution of the parameters suggested that the buildup and the washoff parameters are controlled by forces of different spatial scales. Also, the SWMM model simulated only direct runoff in order to simplify the calibration. Mean pollutant concentration in base flow is required to convert observed concentration to that in direct runoff. The Shoal Creek Watershed discharges into Lady Bird Lake, and changes of water quality in the lake during base flow dominant dates were used to estimate concentration in base flow from Shoal Creek Watershed. Water quality of the lake was determined by Landsat imagery. The equations predicting BMP removal efficiency based on environmental factors were analyzed to show the most efficient and least efficient type of BMP and the land use that BMPs will have the highest and lowest removal efficiency for TSS, TN, and TP. Two planning criteria were utilized for the optimal BMP plans and different time frames were considered. One criterion is goal concentrations in runoff, and the other is a combination of goal concentration and a budget constraint. For each criterion, the associated optimal plan showed an areal ratio between BMP types throughout different time frame. It was also found that the Shoal Creek Watershed needs more BMPs. Suggestions to the Environmental Criteria Manual of Austin were also made based on this study.
    URI
    http://hdl.handle.net/1969.1/153810
    Subject
    Best Management Practice
    BMP
    Low Impact Development
    LID
    Optimization
    Shuffled Complex Evolution - University of Arizona
    SCE-UA
    Landsat
    remote sensing
    water quality
    Stormwater Management Model
    SWMM
    EPA-SWMM
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Tu, Min-cheng (2014). A New Method to Assess Best Management Practice Efficiency to Optimize Storm Water Management. Doctoral dissertation, Texas A & M University. Available electronically from http : / /hdl .handle .net /1969 .1 /153810.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV