Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of the Ensemble Kalman Filter to Estimate Fracture Parameters in Unconventional Horizontal Wells by Downhole Temperature Measurements

    Thumbnail
    View/ Open
    GONZALES-THESIS-2013.pdf (6.647Mb)
    Date
    2013-07-23
    Author
    Gonzales, Sergio Eduardo
    Metadata
    Show full item record
    Abstract
    The increase in energy demand throughout the world has forced the oil industry to develop and expand on current technologies to optimize well productivity. Distributed temperature sensing has become a current and fairly inexpensive way to monitor performance in hydraulic fractured wells in real time by the aid of fiber optic. However, no applications have yet been attempted to describe or estimate the fracture parameters using distributed temperature sensing as the observation parameter. The Ensemble Kalman Filter, a recursive filter, has proved to be an effective tool in the application of inverse problems to determine parameters of non-linear models. Even though large amounts of data are acquired as the information used to apply an estimation, the Ensemble Kalman Filter effectively minimizes the time of operation by only using “snapshots” of the ensembles collected by various simulations where the estimation is updated continuously to be calibrated by comparing it to a reference model. A reservoir model using ECLIPSE is constructed that measures temperature throughout the wellbore. This model is a hybrid representation of what distributed temperature sensing measures in real-time throughout the wellbore. Reservoir and fracture parameters are selected in this model with similar properties and values to an unconventional well. However, certain parameters such as fracture width are manipulated to significantly diminish the computation time. A sensitivity study is performed for all the reservoir and fracture parameters in order to understand which parameters require more or less data to allow the Ensemble Kalman Filter to arrive to an acceptable estimation. Two fracture parameters are selected based on their low sensitivity and importance in fracture design to perform the Ensemble Kalman Filter on various simulations. Fracture permeability has very low sensitivity. However, when applying the estimation the Ensemble Kalman Filter arrives to an acceptable estimation. Similarly fracture halflength, with medium sensitivity, arrives to an acceptable estimation around the same number of integration steps. The true effectiveness of the Ensemble Kalman Filter is presented when both parameters are estimated jointly and arrive to an acceptable estimation without being computationally expensive. The effectiveness of the Ensemble Kalman Filter is directly connected to the quantity of data acquired. The more data available to run simulations, the better and faster the filter performs.
    URI
    https://hdl.handle.net/1969.1/151297
    Subject
    Ensemble Kalman Filter
    History Matching Using DTS
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Gonzales, Sergio Eduardo (2013). Application of the Ensemble Kalman Filter to Estimate Fracture Parameters in Unconventional Horizontal Wells by Downhole Temperature Measurements. Master's thesis, Texas A & M University. Available electronically from https : / /hdl .handle .net /1969 .1 /151297.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentTypeThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartmentType

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV