Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Off-fault Damage Associated with a Localized Bend in the North Branch San Gabriel Fault, California

    Thumbnail
    View/Open
    Becker, Andrew.pdf (84.81Mb)
    Date
    2012-08-15
    Author
    Becker, Andrew 1987-
    Metadata
    Show full item record
    Abstract
    Structures within very large displacement, mature fault zones, such as the North Branch San Gabriel Fault (NBSGF), are the product of a complex combination of processes. Off-fault damage within a damage zone and first-order geometric asperities, such as bends and steps, are thought to affect earthquake rupture propagation and energy radiation, but the effects are not completely understood. We hypothesize that the rate of accumulation of new damage decreases as fault maturity increases, and damage magnitude saturates in very large displacement faults. Nonetheless, geometric irregularities in the fault surface may modify damage zone characteristics. Accordingly, we seek to investigate the orientation, kinematics, and density of features at a range of scales within the damage zone adjacent to an abrupt 13 degree bend over 425 m in the NBSGF in order to constrain the relative role of the initiation of new damage versus the reactivation of preexisting damage adjacent to a bend. Field investigation and microstructural study focused on structural domains before, within, and after the fault bend on both sides of the fault. Subsidiary fault fabrics are similar in all domains outside the bend, which suggests a steady state fracture density and orientation distribution is established on the straight segments before and after the bend. The density of fractures within and outside the bend is similar; however, subsidiary fault orientations and kinematics are different within the bend relative to the straight segments. These observations are best explained by relatively low rates of damage generation relative to rates of fault reactivation during the later stages of faulting on the NBSGF, and that damage zone kinematics is reset as the host rock moves into the bend and again upon exiting the bend. Consequently, significant energy released during earthquake unloading can be dissipated by reactivation and slip on existing fractures in the damage zone, particularly adjacent to mesoscale faults. Thus, areas of heightened reactivation of damage, such as adjacent to geometric irregularities in the fault surface, could affect earthquake rupture dynamics.
    URI
    http://hdl.handle.net/1969.1/148091
    Subject
    Earthquake Rupture Energetics
    Earthquakes
    Off-fault Damage
    Damage Zone
    North Branch San Gabriel Fault
    Faulting
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Becker, Andrew 1987- (2012). Off-fault Damage Associated with a Localized Bend in the North Branch San Gabriel Fault, California. Master's thesis, Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /148091.

    Related items

    Showing items related by title, author, creator and subject.

    • Development of secondary faults between en echelon, oblique-slip faults: examples from basement controlled, small-fault systems in the Llano Uplift of central Texas 

      Hedgcoxe, Howard Reiffert (Texas A&M University, 1987)
      Not available
    • Rupture Dynamics of Strike-Slip Faults with Stepovers: From Conceptually Simplified to Realistically Complex Fault Systems 

      Liu, Zaifeng (2014-05-05)
      This dissertation investigates the interaction of model II in-plane dynamic rupture with a geometrical discontinuity along the fault strike: stepover. One goal is to understand how large the stepover width must be to stop ...
    • Improving Distribution System Reliability Through Risk-base Doptimization of Fault Management and Improved Computer-based Fault Location 

      Dong, Yimai (2013-11-07)
      Utilities of distribution systems now are under the pressure of improving the reliability of power supply, not only from the urge to increase revenue, but also from requirements of their customers and the Independent Service ...

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV