Show simple item record

dc.contributor.advisorVaidya, Nitin H.
dc.creatorHolland, Gavin Douglas
dc.date.accessioned2005-02-17T21:01:43Z
dc.date.available2005-02-17T21:01:43Z
dc.date.created2004-12
dc.date.issued2005-02-17
dc.identifier.urihttps://hdl.handle.net/1969.1/1445
dc.description.abstractRecent advances in low-power technologies have resulted in the proliferation of inexpensive handheld mobile computing devices. Soon, just like the Internet empow- ered a whole new world of applications for personal computers, the development and deployment of robust ubiquitous wireless networks will enable many new and exciting futuristic applications. Certain to be an important part of this future is a class of networks known as "mobile ad hoc networks." Mobile ad hoc networks (or simply "ad hoc networks") are local-area networks formed "on the spot" between collocated wireless devices. These devices self-organize by sharing information with their neigh- bors to establish communication pathways whenever and wherever they are. For ad hoc networks to succeed, however, new protocols must be developed that are capable of adapting to their dynamic nature. In this dissertation, we present a number of adaptive protocols that are designed for this purpose. We investigate new link layer mechanisms that dynamically monitor and adapt to changes in link quality, including a protocol that uses common control messages to form a tight feedback control loop for adaptation of the link data rate to best match the channel conditions perceived by the receiver. We also investigate routing protocols that adapt route selection according to network characteristics. In particular, we present two on-demand routing protocols that are designed to take advantage of the presence of multirate links. We then investigate the performance of TCP, showing how communication outages caused by link failures and routing delays can be very detrimental to its performance. In response, we present a solution to this problem that uses explicit feedback messages from the link layer about link failures to adapt TCP's behavior. Finally, we show how link failures in heterogeneous networks containing links with widely varying bandwidth and delay can cause repeated "modal" changes in capacity that TCP is slow to detect. We then present a modifed version of TCP that is capable of more rapidly detecting and adapting to these changes.en
dc.format.extent2225354 bytesen
dc.format.mediumelectronicen
dc.format.mimetypeapplication/pdf
dc.language.isoen_US
dc.publisherTexas A&M University
dc.subjectmaneten
dc.subjectnetworken
dc.subjectwirelessen
dc.subjecttcpen
dc.subjectroutingen
dc.subject802.11en
dc.subjectadaptiveen
dc.titleAdaptive protocols for mobile ad hoc networksen
dc.typeBooken
dc.typeThesisen
thesis.degree.departmentComputer Scienceen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorTexas A&M Universityen
thesis.degree.nameDoctor of Philosophyen
thesis.degree.levelDoctoralen
dc.contributor.committeeMemberReddy, A. L. Narasimha
dc.contributor.committeeMemberBettati, Riccardo
dc.contributor.committeeMemberPooch, Udo
dc.type.genreElectronic Dissertationen
dc.type.materialtexten
dc.format.digitalOriginborn digitalen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record