Texas A&M University LibrariesTexas A&M University LibrariesTexas A&M University Libraries
    • Help
    • Login
    OAKTrust
    View Item 
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    •   OAKTrust Home
    • Colleges and Schools
    • Office of Graduate and Professional Studies
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automatic tuning of continuous-time filters

    Thumbnail
    View/Open
    etd-tamu-2004B-ELEN-Sumesaglam-2.pdf (2.526Mb)
    Date
    2004-11-15
    Author
    Sumesaglam, Taner
    Metadata
    Show full item record
    Abstract
    Integrated high-Q continuous-time filters require adaptive tuning circuits that will correct the filter parameters such as center frequency and quality factor (Q). Three different automatic tuning techniques are introduced. In all of the proposed methods, frequencyand quality factor tuning loops are controlled digitally, providing stable tuning by activating only one loop at a given time. In addition, a direct relationship between passband gain and quality factor is not required, so the techniques can be applied to active LC filters as well as Gm-C filters. The digital-tuning method based on phase comparison was verified with 1% tuning accuracy at 5.5 MHz for Q of 20. It uses phase information for both Q and center-frequency tuning. The filter output phase is tuned to the known references, which are generated by a frequency synthesizer. The core tuning circuit consists of D flip-flops (DFF) and simple logic gates. DFFs are utilized to perform binary phase comparisons. The second method, high-order digital tuning based on phase comparison, is an extension of the previous technique to high-order analog filters without depending on the master-slave approach. Direct tuning of the overall filter response is achieved without separating individual biquad sections, eliminating switches and their parasitics. The tuning system was verified with a prototype 6th order bandpass filter at 19 MHz with 0.6 MHz bandwidth, which was fabricated in a conventional 0.5 [mu]m CMOS technology. Analysis of different practical limitations is also provided. Finally, the digital-tuning method based on magnitude comparison is proposed for second-order filters for higher frequency operations. It incorporates a frequency synthesizer to generate reference signals, an envelope detector and a switched comparator to compare output magnitudes at three reference frequencies. The theoretical analysis of the technique and the simulation results are provided.
    URI
    http://hdl.handle.net/1969.1/1055
    Subject
    automatic tuning
    filter
    CMOS analog integrated circuits
    low voltage
    transconductance
    OTA-C filter
    Collections
    • Electronic Theses, Dissertations, and Records of Study (2002– )
    Citation
    Sumesaglam, Taner (2004). Automatic tuning of continuous-time filters. Doctoral dissertation, Texas A&M University. Texas A&M University. Available electronically from http : / /hdl .handle .net /1969 .1 /1055.

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Advanced Search

    Browse

    All of OAKTrustCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsDepartment

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    Help and Documentation

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV