MKOPSC Theses and Dissertations
Permanent URI for this collection
Browse
Browsing MKOPSC Theses and Dissertations by Subject "Aerosol"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Flammability and Combustion Behaviors in Aerosols Formed by Industrial Heat Transfer Fluids Produced by the Electrospray Method(2012-10-19) Lian, Peng; Mannan, M. Sam; Cheng, Zhengdong; Laird, Carl; Caton, JeraldThe existence of flammable aerosols presents a high potential for fire hazards in the process industry. Various industrial fluids, most of which operate at elevated temperatures and pressures, can be atomized when released under high pressure through a small orifice. Because of the complexity in the process of aerosol formation and combustion, the availability of data on aerosol flammability and flame propagation behaviors is still quite limited, making it difficult to evaluate the potential fire and explosion risks from released aerosols in the process industry and develop safety measures for preventing and/or mitigating aerosol hazards. A study is needed to investigate the relationship between aerosol combustion behaviors and the properties of the aerosols. This dissertation presents research on the combustion behaviors of flammable aerosols. Monodisperse aerosols created by industrial heat transfer fluids were generated using electrospray. The characteristics of flame propagations in aerosols and the influence of the presence of fuel droplets in the system are studied in the aerosol ignition tests. Flames in aerosols are characterized by non-uniform shapes and discrete flame fronts. Flames were observed in different burning modes. Droplet evaporation was found to play an important role in aerosol burning modes. Droplet evaporation behaviors and fuel vapor distributions are further related to aerosol droplet size, droplet spacing, movement velocity, and liquid volatility. The burning mode of a global flame with rapid size expansion is considered the most hazardous aerosol combustion scenario. This burning mode requires a smaller droplet size and smaller space between droplets. Larger droplet sizes and spacing may hinder the appearance of global flames. But when the liquid fuel has a certain level of volatility, there is an uneven distribution of fuel vapor in the system and this may cause the unique phenomenon of burning mode variations combined with enhanced flame propagation speed. Using an integrated model, the minimum ignition energy values of aerosols were predicted. The aerosol minimum ignition energy is influenced by the fuel-air equivalence ratio and the droplet size. Higher equivalence ratios, up to 1.0, significantly reduce the minimum ignition energy, while larger droplet sizes result in a higher minimum ignition energy.Item Study of formation and convective transport of aerosols using optical diagnostic technique(Texas A&M University, 2004-09-30) Kim, Tae-Kyun; Kihm, Kenneth D.; Mannan, Mahboobul; McIntyre, Peter; Phares, DenisThe characteristics of liquid and solid aerosols have been intensively investigated by means of optical diagnostic techniques. Part I describes the characteristics of liquid aerosol formation formed by heat transfer fluids (HTFs) from bulk liquids. Part II investigates the characteristics of convective transport behavior of solid particles in virtual impactor (VI). The objective of part I is to establish correlations which offer predictions on atomized particle size of HTFs which are widely and commonly used in process industries. There are numerous reports stating that mist explosions formed from leakage cause disastrous accidents in process industries. For safety concerns, the characteristics of mist formation should be known in order to prevent HTFs from catching on fire or exploding. The empirical data on formation of mist are collected by the optical measurement technique, the Fraunhofer diffraction. The Buckingham-PI theorem is applied to establish a correlation between empirical data and representative physical properties of HTFs. Final results of correlations are solved by a statistical method of linear regression. The objective of part II is to investigate the characteristics of convective transport behavior in virtual impactor (VI) which is used to sort polydisperse precursor powder in the process industries of superconductor wire. VI is the device to separate polydisperse particles as a function of particle size by using the difference in inertia between different sizes of particles. To optimize VI performance, the characteristics of convective transport should be identified. This objective is achieved by visualization techniques. The applied visualization techniques are Mie-scattering and laser induced fluorescence (LIF). To investigate analytically, a local Stokes number is introduced in order to offer criteria on predicting the efficiency of VI performance and boundary effect on particle separation. The achieved results can enhance performance and eliminate defects by having knowledge of the behavior of solid particles in VI.