Feed the Future Innovation Lab for Small-Scale Irrigation
Permanent URI for this community
Browse
Browsing Feed the Future Innovation Lab for Small-Scale Irrigation by Subject "Resilience"
Now showing 1 - 20 of 21
Results Per Page
Sort Options
Item Agro-Climatic and hydrological characterization of selected watersheds of northern Ghana. IWMI Working Paper 173. Colombo, Sri Lanka: IWMI.(IWMI, 2017) Kadyampakeni, Davie M.; Obuobie, E.; Mul, Marloes; Appoh, Richard; Owusu, Afua; Ghansah, Benjamin; Boakye-Acheampong, Enoch; Barron, JennieThis paper provides the climatic and biophysical context of three watersheds in northern Ghana. The objective of the study is to describe the agro-climatic and hydrological features of the watersheds from a landscape perspective. The analyses show that water surplus occurs about 3 months in a year, with only one month providing a significant surplus. Small-scale irrigation is, therefore, carried out in the dry months between November and June. The quality of water used for irrigation from wells, reservoirs and rivers is good for irrigation and domestic purposes. The soil chemical parameters across the study sites show that the soils are suitable for irrigation and crop system intensification, although it requires substantial fertilizer inputs. The paper concludes that there are opportunities from both a soil quality and water availability perspective to enhance sustainable intensification through small- and medium-scale irrigation in the selected watersheds.Item Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies(Water, 2018) Assefa, Tewodros; Jha, Manoj; Reyes, Manuel; Srinivasan, Raghavan; Worqlul, Abeyou W.; MDPIThe study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE) technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26%) and the least (9%) applicable low-cost water-lifting technologies in the basin.Item Conservation Agriculture Saves Irrigation Water in the Dry Monsoon Phase in the Ethiopian Highlands(Water, 2019) Belay, Sisay A.; Schmitter, Petra; Worqlul, Abeyou W.; Steenhuis, Tammo S.; Reyes, Manuel R.; Tilahun, Seifu A.; MDPIWater resources in sub-Saharan Africa are more overstressed than in many other regions of the world. Experiments on commercial farms have shown that conservation agriculture (CA) can save water and improve the soil. Nevertheless, its benefits on smallholder irrigated farms have not been adequately investigated, particularly in dry monsoon phase in the Ethiopian highlands. We investigated the effect of conservation agriculture (grass mulch cover and no-tillage) on water-saving on smallholder farms in the Ethiopian highlands. Irrigated onion and garlic were grown on local farms. Two main factors were considered: the first factor was conservation agriculture versus conventional tillage, and the second factor was irrigation scheduling using reference evapotranspiration (ETo) versus irrigation scheduling managed by farmers. Results showed that for both onion and garlic, the yield and irrigation water use efficiency (IWUE) was over 40% greater for CA than conventional tillage (CT). The soil moisture after irrigation was higher in CA compared with CT treatment while CA used 49 mm less irrigation water. In addition, we found that ETo-based irrigation was superior to the farmers’ irrigation practices for both crops. IWUE was lower in farmers irrigation practices due to lower onion and garlic yield responses to overirrigation and greater water application variability.Item Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana(Computers and Electronics in Agriculture, 2019) Worqlul, Abeyou W.; Dile, Yihun T.; Jeong, Jaehak; Adimassu, Zenebe; Lefore, Nicole; Gerik, Thomas; Srinivasan, Raghavan; Clarke, Neville; ElsevierEstimating the potential land resources suitable for irrigation and evaluating the possible impact of climate change on land suitability is essential for planning a sustainable agricultural system. This study applied a GIS-based Multi-Criteria Evaluation (MCE) technique to evaluate the suitability of land for irrigation in Ghana for a baseline period (1990 to 2010) and future time horizons 2050s (2041 to 2060) and 2070s (2061 to 2080). Key factors considered to evaluate the suitability of the land for irrigation include biophysical features (such as climate, land use, soil, and slope) and socioeconomic factors (such as proximity to roads and population density). These factors were weighted using a pairwise comparison matrix then reclassified and overlaid on a 30 m grid to estimate the irrigation potential of the country. Groundwater data from the British Geological Survey (BGS) were superimposed onto the land suitability map layer to evaluate the irrigation potential and the accessibility of shallow groundwater with simple water lifting technologies. Downscaled and bias-corrected future climate data from HadGEM2-ES under Representative Concentration Pathways (RCP) 4.5 emission scenario were used to represent the future climate horizon. Due to climate change, on average, rainfall will increase by 15 mm and 20 mm from the baseline period in the 2050s and 2070s, respectively. The average temperature shows a consistent increase in the majority of Ghana and a higher rate of increase is expected in the 2070s. Consequently, the rising temperature will increase the potential evapotranspiration by 6.0% and 7.6% in the 2050s and 2070s, respectively. The suitability analysis indicates that approximately 9% of the country is suitable for surface irrigation under the baseline period. A large portion of the potential land is located in the southwestern part of the country. The potential suitable land has an average groundwater access of 12 m from the surface with an average borehole potential yield of 2.5 L/second, which makes it favorable for utilization of simple water lifting technologies. Due to climate change, 9.5% of the suitable land will become unfavorable for irrigation in 2050s, and it is expected to reach 17% in 2070s.Item Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia(Environmental Systems Research, 2017) Gashaw, Temesgen; Tulu, Taffa; Argaw, Mekuria; Worqlul, Abeyou W.; SpringerBackgroundLand use/land cover (LU/LC) change is the challenging and continuous drivers of environment change. Understanding the rate and process of change is, therefore, basic for managing the environment. This study was intended to analyze the LU/LC changes from 1985 to 2015 periods, and predict the situation to 2030 and 2045 in the Andassa watershed of Blue Nile basin, Ethiopia. The hybrid classification technique for extracting thematic information from satellite images and CA-Markov model for prediction of LU/LC were employed.ResultsCultivated land was expanding from 62.7% in 1985 to 73.1% in 2000 and to 76.8% in 2015. The area of built-up also slightly increased (0.1–1.1%) between 1985 and 2015 periods. In contrast, forest, shrubland and grassland were reduced from 3.5 to 1.9%, 26.2 to 15.3% and 7.6 to 4.9% in 1985 and 2015 periods, respectively. The increase of cultivated land and built-up area, and the withdrawing of forest, shrubland and grassland were further continued in 2030 and 2045 periods.ConclusionSignificant amount of LU/LC conversions had occurred in the watershed from 1985 to 2015 periods, and expected to continue in 2030 and 2045 periods. Thus, appropriate interventions to revert the trends are very much critical.Item Evaluation of regional climate models performance in simulating rainfall climatology of Jemma sub-basin, Upper Blue Nile Basin, Ethiopia(Dynamics of Atmospheres and Oceans, 2018) Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.; Taye, Meron Teferi; ElsevierThis study examines the performance of 10 Regional Climate Model (RCM) outputs which are dynamically downscaled from the fifth phase of Coupled Model Inter-comparison Project (CMIP5) GCMs using different RCMs parameterization approaches. The RCMs are evaluated based on their ability to reproduce the magnitude and pattern of monthly and annual rainfall, characteristics of rainfall events and variability related to Sea Surface Temperature (SST) for the period 1981–2005. The outputs of all RCMs showed wet bias, particularly in the higher elevation areas of the sub-basin. Wet bias of annual rainfall ranges from 9.60% in CCLM4 (HadGEM2-ES) model to 110.9% in RCA4 (EC-EARTH) model. JJAS (June-September) rainfall is also characterized by wet bias ranges from 0.76% in REMO (MPI-ESM-LR) model to 100.7% in RCA4 (HadGEM2-ES) model. GCMs that were dynamically downscaled through REMO (Max Planck Institute) and CCLM4 (Climate Limited-Area Modeling) performed better in capturing the rainfall climatology and distribution of rainfall events. However, GCMs dynamically downscaled using RCA4 (SMHI Rossby Center Regional Atmospheric Model) were characterized by overestimation and there are more extreme rainfall events in the cumulative distribution. Most of the RCMs’ rainfall over the sub-basin showed a teleconnection with Sea Surface Temperature (SST) of CMIP5 GCMs in the Pacific and Indian Oceans, but weak. The ensemble mean of all 10 RCMs simulations was superior in capturing the seasonal pattern of the rainfall and had better correlation with observed annual (Correl = 0.6) and JJAS season rainfall (Correl = 0.5) than any single model (S-RCM). We recommend using GCMs downscaled using REMO and CCLM4 RCMs and stations based statistical bias correction to manage elevation based biases of RCMs in the Upper Blue Nile Basin, specifically in the Jemma sub-basin.Item Experimental Evaluation of Conservation Agriculture with Drip Irrigation for Water Productivity in Sub-Saharan Africa(Water, 2019) Assefa, Tewodros; Jha, Manoj; Reyes, Manuel; Tilahun, Seifu; Worqlul, Abeyou W.; MDPIA field-scale experimental study was conducted in Sub-Saharan Africa (Ethiopia and Ghana) to examine the effects of conservation agriculture (CA) with drip irrigation system on water productivity in vegetable home gardens. CA here refers to minimum soil disturbance (no-till), year-round organic mulch cover, and diverse cropping in the rotation. A total of 28 farmers (13 farmers in Ethiopia and 15 farmers in Ghana) participated in this experiment. The experimental setup was a paired ‘t’ design on a 100 m2 plot; where half of the plot was assigned to CA and the other half to conventional tillage (CT), both under drip irrigation system. Irrigation water use and crop yield were monitored for three seasons in Ethiopia and one season in Ghana for vegetable production including garlic, onion, cabbage, tomato, and sweet potato. Irrigation water use was substantially lower under CA, 18% to 45.6%, with a substantial increase in crop yields, 9% to about two-fold, when compared with CT practice for the various vegetables. Crop yields and irrigation water uses were combined into one metric, water productivity, for the statistical analysis on the effect of CA with drip irrigation system. One-tailed paired ‘t’ test statistical analysis was used to examine if the mean water productivity in CA is higher than that of CT. Water productivity was found to be significantly improved (α = 0.05) under the CA practice; 100%, 120%, 222%, 33%, and 49% for garlic, onion, tomato, cabbage, and sweet potato respectively. This could be due to the improvement of soil quality and structure due to CA practice, adding nutrients to the soil and sticking soil particles together (increase soil aggregates). Irrigation water productivity for tomato under CA (5.17 kg m−3 in CA as compared to 1.61 kg m−3 in CT) is found to be highest when compared to water productivity for the other vegetables. The mulch cover provided protection for the tomatoes from direct contact with the soil and minimized the chances of soil-borne diseases. Adapting to CA practices with drip irrigation in vegetable home gardens is, therefore, a feasible strategy to improve water use efficiency, and to intensify crop yield, which directly contributes towards the sustainability of livelihoods of smallholder farmers in the region.Item Field intervention results - ILSSI External Evaluation, 2017(Feed the Future, 2017) IWMI; USAID; The Borlaug Institute; TAMU AgriLife Research; TAMU System; IFPRI; IWMI; ILRI; North Carolina A&T State University; CGIAR; ILSSIItem Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia(Water, 2018) Worqlul, Abeyou, W.; Dile, Yihun Taddele; Ayana, Essayas Kaba; Jeong, Jaehak; Adem, Anwar Assefa; Gerik, Thomas; MDPIThis study assessed the impact of climate change on water availability and variability in two subbasins in the upper Blue Nile basin of Ethiopia. Downscaled future climate data from HadCM3 of A2 (medium-high) and B2 (medium-low) emission scenarios were compared to the observed climate data for a baseline period (1961–1990). The emission scenario representing the baseline period was used to predict future climate and as input to a hydrologic model to estimate the impact of future climate on the streamflow at three future time horizons: 2020–2045, 2045–2070 and 2070–2100. Results suggest that medium-high emission scenario best represents the local rainfall and temperature pattern. With A2 scenario, daily maximum/minimum temperature will increase throughout the future time horizons. The minimum and maximum temperature will increase by 3.6 °C and 2.4 °C, respectively, towards the end of the 21st century. Consequently, potential evapotranspiration is expected to increase by 7.8%, although trends in annual rainfall do not show statistically meaningful trends between years. A notable seasonality was found in the rainfall pattern, such that dry season rainfall amounts are likely to increase and wet season rainfall to decrease. The hydrological model indicated that the local hydrology of the study watersheds will be significantly influenced by climate change. Overall, at the end of the century, streamflow will increase in both rivers by up to 64% in dry seasons and decrease by 19% in wet seasons.Item Impact of Climate Change on Streamflow Hydrology in Headwater Catchments of the Upper Blue Nile Basin, Ethiopia(Water, 2018) Worqlul, Abeyou Wale; Dile, Yihun Taddele; Ayana, Essayas Kaba; Jeong, Jaehak; Adem, Anwar Assefa; Gerik, Thomas; MDPIThis study assessed the impact of climate change on water availability and variability in two subbasins in the upper Blue Nile basin of Ethiopia. Downscaled future climate data from HadCM3 of A2 (medium-high) and B2 (medium-low) emission scenarios were compared to the observed climate data for a baseline period (1961–1990). The emission scenario representing the baseline period was used to predict future climate and as input to a hydrologic model to estimate the impact of future climate on the streamflow at three future time horizons: 2020–2045, 2045–2070 and 2070–2100. Results suggest that medium-high emission scenario best represents the local rainfall and temperature pattern. With A2 scenario, daily maximum/minimum temperature will increase throughout the future time horizons. The minimum and maximum temperature will increase by 3.6 °C and 2.4 °C, respectively, towards the end of the 21st century. Consequently, potential evapotranspiration is expected to increase by 7.8%, although trends in annual rainfall do not show statistically meaningful trends between years. A notable seasonality was found in the rainfall pattern, such that dry season rainfall amounts are likely to increase and wet season rainfall to decrease. The hydrological model indicated that the local hydrology of the study watersheds will be significantly influenced by climate change. Overall, at the end of the century, streamflow will increase in both rivers by up to 64% in dry seasons and decrease by 19% in wet seasons.Item The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies(Environmental Systems Research, 2018) Hyandye, Canute B.; Worqlul, Abeyou; Martz, Lawrence W.; Muzuka, Alfred N.N.; SpringerLand use/cover and climate changes have a great influence on the hydrological processes in the watershed. The impacts of land use/cover and climate change are set to increase in the future due to the increased clearance of virgin forest lands for agriculture and the rise of global warming. The way in which the future climate will interact with the land use changes and affect the water balance in the watersheds requires more attention. This study was carried out in the Ndembera river watershed in Usangu basin, Tanzania, whereby the Soil and Water Assessment Tool was used to (i) assess the impact of near future (2010–2039) climate and 2013–2020 land use/cover change on the water balance and streamflow and (ii) evaluate the effectiveness of four land and water management practices as the mitigation and adaptation strategies for the impacts of climate and land use/cover changes. The 2020 land use/cover was predicted using Markov Chain and Cellular Automata models based on 2006 and 2013 land use/covers. The near-future climate scenario was generated from the Coupled Model Intercomparison Project 5 General Circulation Models.Item The impacts of rice cultivation on an indigenous Fogera cattle population at the eastern shore of Lake Tana, Ethiopia(Ecological Processes, 2019) Desta, Mare Addis; Zeleke, Gete; Payne, William A.; Shenkoru, Teshome; Dile, Yihun T.; SpringerBackgroundEven though increasing population pressure and associated increased demand for food and economic development have led to overexploitation and degradation of wetlands throughout the world, the drivers are most severe in developing countries. For generations, Fogera wetlands in Ethiopia which are parts of Lake Tana Biosphere Reserve have been widely used for grazing of indigenous cattle. Fogera cattle are one of several recognized indigenous breeds of Abyssinian zebu bovine cattle (Bos primigenius indicus) found in Fogera district, Ethiopia. This study was conducted to quantify impacts of rice expansion on cattle population in Fogera wetlands. Data were collected through questionnaire, focus group discussions, interviews, and land use/land cover analysis. Respondents were selected using systematic random sampling. Variance and LEVENES test were used to analyze the livestock unit and to check homogeneity.ResultsThe study revealed that during the 20-year period preceding 2015, the number of cattle owned decreased from 3509 to 1510 heads. In the same period, rice cultivation increased from 182 to 9499 ha and production from 6701 to 714,013 qt. Grazing lands were reduced from 8550 to 3501 ha, wetlands from 3114 to 1060 ha, and forests from 1542 to 907 ha. Land use/land cover changes showed a negative balance of 40% dry matter requiring cattle feed to be increasingly supplemented through purchases, or reduction in herd number. The study also indicated that the land-use changes brought at the expense of traditional cattle production systems.ConclusionHence, proper management is required to maintain these valuable resources and keep their role in socioeconomic development of the area.Item Improving on-farm water management through irrigation information for climate-smart agriculture in sub-Saharan Africa, In Ed. C. Batchelor and J. Schnetzer, Compendium on Climate-Smart Irrigation Concepts, evidence and options for a climatesmart approach to improving the performance of irrigated cropping systems. Rome: Global Alliance for Climate-Smart Agriculture. Pp. 121-124. http://www.fao.org/gacsa/resources/gacsa-csa-documents/en/.(2018) Schmitter, Petra;Lefore, Nicole;Barron, Jennie;Giordano, MeredithFarm water management through irrigation information for climate-smart agriculture in sub-Saharan Africa.Item Last Mile Energy Access for Productive Energy Use in Agriculture in Sub-Saharan Africa – What and Where is the Potential?(IFPRI, 2019) Xie, Hua; Ringler, Claudia; You, LiangzhiProductive Energy Use in Agriculture in Sub-Saharan AfricaItem Modeling the Impacts of Conservation Agriculture with a Drip Irrigation System on the Hydrology and Water Management in Sub-Saharan Africa(MDPI, 2018) Assefa, Tewodros; Jha, Manoj; Reyes, Manuel; Worqlul, Abeyou W.; SustainabilityThe agricultural system in Sub-Saharan Africa (SSA) is dominated by traditional farming practices with poor soil and water management, which contributes to soil degradation and low crop productivity. This study integrated field experiments and a field-scale biophysical model (Agricultural Policy Environmental Extender, APEX) to investigate the impacts of conservation agriculture (CA) with a drip irrigation system on the hydrology and water management as compared to the conventional tillage (CT) practice. Field data were collected from four study sites; Dangishita and Robit (Ethiopia), Yemu (Ghana), and Mkindo (Tanzania) to validate APEX for hydrology and crop yield simulation. Each study site consisted of 100 m2 plots divided equally between CA and CT practices and both had a drip irrigation setup. Cropping pattern, management practices, and irrigation scheduling were monitored for each experimental plot. Significant water savings (α = 0.05) were observed under CA practice; evapotranspiration and runoff were reduced by up to 49% and 62%, respectively, whereas percolation increased up to three-fold. Consequently, irrigation water need was reduced in CA plots by about 14–35% for various crops. CA coupled with drip irrigation was found to be an efficient water saving technology and has substantial potential to sustain and intensify crop production in the regionItem Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia(Theoretical and Applied Climatology, 2018) Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.; SpringerClimate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen’s slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.Item Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia(Theoretical and Applied Climatology, 2018) Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.; SpringerClimate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen’s slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.Item Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia(Journal of Hydrology,, 2018) Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H.P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.; ElsevierIn many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate–Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.Item Scaling-up Conservation Agriculture Production System (CAPS) with Drip Irrigation by Integrating MCE Technique and the APEX Model(Water, 2019) Assefa, Tewodros; Jha, Manoj; Worqlul, Abeyou W.; Reyes, Manuel; Tilahun, Seifu; MDPIThe conservation agriculture production system (CAPS) approach with drip irrigation has proven to have the potential to improve water management and food production in Ethiopia. A method of scaling-up crop yield under CAPS with drip irrigation is developed by integrating a biophysical model: APEX (agricultural policy environmental eXtender), and a Geographic Information System (GIS)-based multi-criteria evaluation (MCE) technique. Topography, land use, proximity to road networks, and population density were considered in identifying potentially irrigable land. Weather and soil texture data were used to delineate unique climate zones with similar soil properties for crop yield simulation using well-calibrated crop model parameters. Crops water demand for the cropping periods was used to determine groundwater potential for irrigation. The calibrated APEX crop model was then used to predict crop yield across the different climatic and soil zones. The MCE technique identified about 18.7 Mha of land (16.7% of the total landmass) as irrigable land in Ethiopia. Oromia has the highest irrigable land in the nation (35.4% of the irrigable land) when compared to other regional states. Groundwater could supply a significant amount of the irrigable land for dry season production under CAPS with drip irrigation for the various vegetables tested at the experimental sites with about 2.3 Mha, 3.5 Mha, 1.6 Mha, and 1.4 Mha of the irrigable land available to produce garlic, onion, cabbage, and tomato, respectively. When comparing regional states, Oromia had the highest groundwater potential (40.9% of total potential) followed by Amhara (20%) and Southern Nations, Nationalities, and Peoples (16%). CAPS with drip irrigation significantly increased groundwater potential for irrigation when compared to CTPS (conventional tillage production system) with traditional irrigation practice (i.e., 0.6 Mha under CTPS versus 2.2 Mha under CAPS on average). Similarly, CAPS with drip irrigation depicted significant improvement in crop productivity when compared to CTPS. APEX simulation of the average fresh vegetable yield on the irrigable land under CAPS with drip irrigation ranged from 1.8–2.8 t/ha, 1.4–2.2 t/ha, 5.5–15.7 t/ha, and 8.3–12.9 t/ha for garlic, onion, tomato, and cabbage, respectively. CAPS with drip irrigation technology could improve groundwater potential for irrigation up to five folds and intensify crop productivity by up to three to four folds across the nation.Item Statistical bias correction of regional climate model simulations for climate change projection in the Jemma sub-basin, upper Blue Nile Basin of Ethiopia(Theoretical and Applied Climatology, 2019) Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.; SpringerThis study evaluates bias correction methods and develops future climate scenarios using the output of a better bias correctiontechnique at the Jemma sub-basin. The performance of different bias correction techniques was evaluated using several statisticalmetrics. The bias correction methods performance under climate condition different from the current climate was also evaluatedusing the differential split sample testing (DSST) and reveals that the distribution mapping technique is valid under climatecondition different from the current climate. All bias correction methods were effective in adjusting mean monthly and annualRCM simulations of rainfall and temperature to the observed rainfall and temperature values. However, distribution mappingmethod was better in capturing the 90th percentile of observed rainfall and temperature and wet day probability of observedrainfall than other methods. As a result, we use the future (2021–2100) simulation of RCMs which are bias corrected usingdistribution mapping technique. The output of bias-adjusted RCMs unfolds a decline of rainfall, a persistent increase of temperature and an increase of extremes of rainfall and temperature in the future climate under emission scenarios of RepresentativeConcentration Pathways 4.5, 8.5 and 2.6 (RCP4.5, RCP8.5 and RCP2.6). Thus, climate adaptation strategies that can provideoptimal benefits under different climate scenarios should be developed to reduce the impact of future climate change.