Browsing by Author "Gagliardi, Carl A."
Now showing 1 - 20 of 108
Results Per Page
Sort Options
Item 0+-]0-Beta-Decay of C-16(American Physical Society, 1983) Gagliardi, Carl A.; Garvey, G. T.; Jarmie, N.; Roberston, R. G. H.Item 1st Observation of the (Li-6, He-8) Reaction(American Physical Society, 1988) Gagliardi, Carl A.; Semon, D. R.; Takada, E.; Tanner, D. M.; Tribble, Robert E.Item Astrophysical S factor for Be-9(p,gamma)B-10(American Physical Society, 1999) Sattarov, A.; Mukhamedzhanov, AM; Azhari, A.; Gagliardi, Carl A.; Trache, L.; Tribble, Robert E.The Be-9(p, gamma) B-10 reaction plays an important role in primordial and stellar nucleosynthesis of light elements in the p shell, but the energy dependence of S(E) has not been well understood. We reanalyze the existing Be-9(p, gamma) B-10 experimental data within the framework of the R-matrix method. The direct capture part of the S factor is calculated using the experimentally measured asymptotic normalization coefficients for B-10 --> Be-9 + p. The fitted parameters of the low-lying B-10 resonances are also required to be consistent with previous measurements of Li-6(alpha, gamma) log. A good simultaneous fit to both radiative capture reactions is found, in contrast to previous analyses. These results demonstrate that experimentally measured asymptotic normalization coefficients, coupled to the R-matrix method, can provide a reasonable determination of direct radiative capture rates, even when the captured proton is tightly bound in the final nucleus. [S0556-2813(99)03608-0].Item Astrophysical S factor for C-13(p,gamma)N-14 and asymptotic normalization coefficients(American Physical Society, 2002) Mukhamedzhanov, AM; Azhari, A.; Burjan, V.; Gagliardi, Carl A.; Kroha, V.; Sattarov, A.; Tang, X.; Trache, L.; Tribble, Robert E.We reanalyze the C-13(p,gamma)N-14 radiative capture reaction within the R-matrix approach. The low-energy astrophysical S factor has important contributions from both resonant and onresonant captures. The normalization of the nonresonant component of the transition to a particular N-14 bound state is expressed in terms of the asymptotic normalization coefficient (ANC). In the analysis we use the experimental ANC's inferred from the C-13(N-14,C-13)N-14 and C-13(He-3,d)N-14 reactions. The fits of the calculated S factors to the experimental data are sensitive to the ANC values and are used to test the extracted ANC's. We find that for transitions to all the states in N-14, except the third excited state, the ANC's determined from the transfer reactions provide the best fit. The astrophysical factor we obtain, S(0)=7.7+/-1.1 keV b, is in excellent agreement with previous results.Item Astrophysical S factor for the radiative capture (12)N(p,gamma)(13)O determined from the (14)N((12)N,(13)O)(13)C proton transfer reaction(American Physical Society, 2009) Banu, A.; Al-Abdullah, T.; Fu, C.; Gagliardi, Carl A.; McCleskey, M.; Mukhamedzhanov, A. M.; Tabacaru, G.; Trache, L.; Tribble, Robert E.; Zhai, Y.; Carstoiu, F.; Burjan, V.; Kroha, V.The cross section of the radiative proton capture reaction on the drip line nucleus (12)N was investigated using the asymptotic normalization coefficient (ANC) method. We have used the (14)N((12)N,(13)O)(13)C proton transfer reaction at 12 MeV/nucleon to extract the ANC for (13)O ->(12)N+p and calculate from it the direct component of the astrophysical S factor of the (12)N(p,gamma)(13)O reaction. The optical potentials used and the distorted-wave Born approximation analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time as the transfer measurement. From the transfer, we determined the square of the ANC, C(p1/2)(2)((13)O(g.s.))=2.53 +/- 0.30 fm(-1), and hence a value of 0.33(4) keV b was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of S(total)(0)=0.42(6) keV b. The (12)N(p,gamma)(13)O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.Item Asymptotic normalization coefficients and the Be-7(p, gamma)B-8 astrophysical S factor(American Physical Society, 2001) Azhari, A.; Burjan, V.; Carstoiu, F.; Gagliardi, Carl A.; Kroha, V.; Mukhamedzhanov, AM; Nunes, FM; Tang, X.; Trache, L.; Tribble, Robert E.We consider the results of two proton transfer reactions, B-10(Be-7, B-8)Be-9 and N-14(Be-7, B-8)C-13, to obtain a weighted average of the measured asymptotic normalization coefficients for the virtual transition 7Be +pB-8. These coefficients specify the amplitude of the tail of the B-8 overlap function in the Be-7+p channel, and are used to calculate the astrophysical S factor for the direct capture reaction Be-7(p, gamma)B-8 at solar energies, S-17(0) In light of recent improvements in the determination of optical-model potentials, including detailed understanding of the correlations between the DWBA analyses of the two experiments, and a new experimental measurement of the asymptotic normalization coefficients for the virtual transition C-13+pN-14, we report a weighted average asymptotic normalization coefficient of C-p3/2(2)= 0.388+/-0.039 fm(-1) for B-8Be-7+p, which implies S-17(0)= 17.3+/-1.8 eV b.Item Asymptotic normalization coefficients for 14N+p -> O-15 and the astrophysical S factor for N-14(p, gamma)O-15(American Physical Society, 2003) Mukhamedzhanov, AM; Bem, P.; Brown, BA; Burjan, V.; Gagliardi, Carl A.; Kroha, V.; Novak, J.; Nunes, FM; Paskor, S.; Pirlepesov, F.; Simeckova, E.; Tribble, Robert E.; Vincour, J.The N-14(p,gamma)O-15 reaction, which controls energy production in the CNO cycle, has contributions from both resonance and direct captures to the ground and excited states. The overall normalization of the direct captures is defined by the corresponding asymptotic normalization coefficients (ANCs). Especially important is the ANC for the subthreshold state in O-15 at -0.504 keV since direct capture through this state dominates the reaction rate at stellar energies. In order to determine the ANCs for N-14+p-->O-15, the N-14(He-3,d)O-15 proton transfer reaction has been measured at an incident energy of 26.3 MeV. Angular distributions for proton transfer to the ground and five excited states were obtained. ANCs were then extracted from comparison to both distorted-wave Born approximation and coupled-channels Born approximation calculations. Using these ANCs, we calculated the astrophysical factor and reaction rates for N-14(p,gamma)O-15. Our analysis favors a low value for the astrophysical factor.Item Asymptotic normalization coefficients for B-10->Be-9+p(American Physical Society, 1997) Mukhamedzhanov, AM; Clark, HL; Gagliardi, Carl A.; Lui, YW; Trache, L.; Tribble, Robert E.; Xu, HM; Zhou, XG; Burjan, V.; Cejpek, J.; Kroha, V.; Carstoiu, F.The differential cross sections for the reactions Be-9(B-10, B-10)Be-9 and Be-9(B-10,Be-9)B-10 have been measured at an incident energy of 100 MeV. The elastic scattering data have been used to determine the optical model parameters for the Be-9+B-10 system at this energy. These parameters are then used in distorted-wave Born approximation (DWBA) calculations to predict the cross sections of the Be-9(B-10,Be-9)B-10 proton exchange reaction, populating the ground and low-lying states in B-10. By normalizing the theoretical DWBA proton exchange cross sections to the experimental ones, the asymptotic normalization coefficients (ANC's), defining the normalization of the tail of the B-10 bound state wave functions in the two-particle channel Be-9+p, have been found. The ANC for the virtual decay B-10(g.s.)-->Be-9+p will be used in an analysis of the B-10(Be-7,B-8)Be-9 reaction to extract the ANC's for B-8-->Be-7+p. These ANC's determine the normalization of the Be-7(p,gamma)B-8 radiative capture cross section at very low energies, which is crucially important for nuclear astrophysics.Item Asymptotic normalization coefficients for B-8 -> Be-7+p from a study of Li-8 -> Li-7+n(American Physical Society, 2003) Trache, L.; Azhari, A.; Carstoiu, F.; Clark, HL; Gagliardi, Carl A.; Lui, YW; Mukhamedzhanov, AM; Tang, X.; Timofeyuk, N.; Tribble, Robert E.Asymptotic normalization coefficients (ANCs) for Li-8-->Li-7+n have been extracted from the neutron transfer reaction C-13(Li-7,Li-8)C-12 at 63 MeV. These are related to the ANCs in B-8-->Be-7 + p using charge symmetry. We extract ANCs for B-8 which are in very good agreement with those inferred from proton transfer and breakup experiments. We have also separated the contributions from the p(1/2) and p(3/2) components in the transfer. We find the astrophysical factor for the Be-7(p, gamma)B-8 reaction to be S-17( 0) = 17.6+/-1.7 eV b. This is the first time that the rate of a direct capture reaction of astrophysical interest has been determined through a measurement of the ANCs in the mirror system.Item Asymptotic normalization coefficients for C-13+p -> N-14(American Physical Society, 1998) Trache, L.; Azhari, A.; Clark, HL; Gagliardi, Carl A.; Lui, YW; Mukhamedzhanov, AM; Tribble, Robert E.; Carstoiu, F.The C-13(N-14,C-13)N-14 proton exchange reaction has been measured at an incident energy of 162 MeV. Angular distributions were obtained for proton transfer to the ground and low-lying excited states in N-14. Elastic scattering of N-14 On C-13 also was measured out to the rainbow angle region in order to find reliable optical model potentials. Asymptotic normalization coefficients for the system C-13+p --> N-14 have been found for the ground state and the excited states at 2.313, 3.948, 5.106, and 5.834 MeV in N-14. These asymptotic normalization coefficients will be used in a determination of the S factor for Be-7(p, gamma)B-8 at solar energies from a measurement of the proton transfer reaction N-14(Be-7,B-8)C-13. [S0556-2813(98)03111-2].Item Asymptotic normalization coefficients for N-14 C-13+p from C-13(He-3,d)N-14(American Physical Society, 2000) Bem, P.; Burjan, V.; Kroha, V.; Novak, J.; Piskor, S.; Simeckova, E.; Vincour, J.; Gagliardi, Carl A.; Mukhamedzhanov, AM; Tribble, Robert E.The C-13(He-3,d) N-14 proton transfer reaction has been measured at an incident energy of 26.3 MeV. Angular distributions for proton transfer to the ground state and excited states at 2.313 and 3.948 MeV in N-14 are analyzed within the framework of the modified DWBA. Asymptotic normalization coefficients (ANC's) defining the amplitude of the tails of the N-14 bound-state wave functions in the C-13+p channel are extracted that are in excellent agreement with values found previously with the C-13(N-14,C-13)N-14 reaction. We conclude that C-p1/2(2)=18.2(9) fm(-1) and C-p3/2(2) = 0.91(14) fm(-1) for the virtual decay N-14(g.s.) --> C-13+p. These are necessary for the analysis of the N-14(Be-7, B-8)C-13 and N-14( C-11, N-12) C-13 reactions to extract the ANC's far Be-7+p --> B-8 and C-11+p-->N-12, which determine the direct radiative capture cross sections Be-7(p,gamma)B-8 and C-11(p,gamma)N-12 at astrophysical energies.Item Asymptotic normalization coefficients from the (20)Ne((3)He, d)(21)Na reaction and astrophysical factor for (20)Ne(p,gamma)(21)Na(American Physical Society, 2006) Mukhamedzhanov, AM; Bem, P.; Burjan, V.; Gagliardi, Carl A.; Irgaziev, BF; Kroha, V.; Novak, J.; Piskor, S.; Simeckova, E.; Tribble, Robert E.; Vesely, F.; Vincour, J.The (20)Ne(p,gamma)(21)Na reaction rate at stellar energies is dominated by capture to the ground state through the tail of a subthreshold resonance state at an excitation energy of 2425 keV in (21)Na. Both resonant and direct capture contribute to the reaction rate while direct captures to other bound states are negligible. The overall normalization of direct capture to the subthreshold state is determined by the asymptotic normalization coefficient (ANC). Simultaneously this ANC determines the proton partial width of the subthreshold resonance state. To determine the ANC, the (20)Ne((3)He,d)(21)Na proton transfer reaction has been measured, at an incident energy of 25.83 MeV. Angular distributions for proton transfer to the ground and first three excited states were measured, and ANCs were then extracted from comparison with distorted-wave Born approximation calculations. Using these ANCs, we calculated the astrophysical factor for (20)Ne(p,gamma)(21)Na. Our total astrophysical factor is S(0)=5900 +/- 1200 keV b. Our analysis confirms that only nonresonant and resonant captures through the subthreshold state are important.Item Asymptotic normalization coefficients, spectroscopic factors, and direct radiative capture rates(American Physical Society, 2001) Mukhamedzhanov, AM; Gagliardi, Carl A.; Tribble, Robert E.We compare the use of asymptotic normalization coefficients (ANC's) and spectroscopic factors determined from peripheral transfer reactions for determining the overall normalization of peripheral direct radiative capture reaction processes. We demonstrate that ANC's provide a natural way to parametrize the rates of both peripheral transfer and direct capture reactions. Furthermore, ANC's inferred from one reaction may be used in the analysis of a second reaction without further knowledge regarding their origin, and independent measurements of a given ANC may be combined to give an overall "best value" in a straightforward manner. In contrast, a spectroscopic factor derived from analysis of a peripheral transfer reaction can only be used in subsequent calculations if one has detailed knowledge of the single-particle bound state orbital that was assumed when the spectroscopic factor was obtained.Item Asymptotic scattering wave function for three charged particles and astrophysical capture processes(Texas A&M University, 2006-08-16) Pirlepesov, Fakhriddin; Tribble, Robert E.; Gagliardi, Carl A.; Ko, Che Ming; Yennello, Sherry J.The asymptotic behavior of the wave functions of three charged particles has been investigated. There are two different types of three-body scattering wave functions. The first type of scattering wave function evolves from the incident three-body wave of three charged particles in the continuum. The second type of scattering wave function evolves from the initial two-body incident wave. In this work the asymptotic three-body incident wave has been derived in the asymptotic regions where two particles are close to each other and far away from the third particle. This wave function satisfies the Schrodinger equation up to terms O(1/3pa), where pa is the distance between the center of mass of two particles and the third particle. The derived asymptotic three-body incident wave transforms smoothly into RedmondÂ’s asymptotic incident wave in the asymptotic region where all three particles are well separated. For the scattering wave function of the second type the asymptotic threebody scattered wave has been derived in all the asymptotic regions. In the asymptotic region where all three particles well separated, the derived asymptotic scattered wave coincides with the Peterkop asymptotic wave. In the asymptotic regions where two particles are close to each other and far away from the third one, this is a new expression which is free of the logarithmically diverging phase factors that appeared in the Peterkop approach. The derived asymptotic scattered wave resolves a long-standing phase-amplitude ambiguity. Based on these results the expressions for the exact prior and post breakup amplitudes have been obtained. The post breakup amplitude for charged particles has not been known and has been derived for the first time directly from the prior form. It turns out that the post form of the breakup amplitude is given by a surface integral in the six dimensional hyperspace, rather than a volume integral, with the transition operator expressed in terms of the interaction potentials. We also show how to derive a generalized distorted-wave-Born approximation amplitude (DWBA) from the exact prior form of the breakup amplitude. It is impossible to derive the DWBA amplitude from the post form. The three-body Coulomb incident wave is used to calculate the reaction rates of 7Be(ep, e)8B and 7Be(pp, p)8B nonradiative triple collisions in stellar environments.Item Azimuthal anisotropy in Au plus Au collisions at root S-NN=200 GeV(American Physical Society, 2005) Adams, J.; Aggarwal, MM; Ahammed, Z.; Amonett, J.; Anderson, BD; Arkhipkin, D.; Averichev, GS; Badyal, SK; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, LS; Baudot, J.; Bekele, S.; Belaga, VV; Bellwied, R.; Berger, J.; Bezverkhny, BI; Bharadwaj, S.; Bhasin, A.; Bhati, AK; Bhatia, VS; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Billmeier, A.; Bland, LC; Blyth, CO; Bonner, BE; Botje, M.; Boucham, A.; Brandin, AV; Bravar, A.; Bystersky, M.; Cadman, RV; Cai, XZ; Caines, H.; Sanchez, MCD; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, HF; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, JP; Cormier, TM; Cramer, JG; Crawford, HJ; Das, D.; Das, S.; de Moura, MM; Derevschikov, AA; Didenko, L.; Dietel, T.; Dogra, SM; Dong, WJ; Dong, X.; Draper, JE; Du, F.; Dubey, AK; Dunin, VB; Dunlop, JC; Mazumdar, MRD; Eckardt, V.; Edwards, WR; Efimov, LG; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, Carl A.; Gaillard, L.; Gans, J.; Ganti, MS; Gaudichet, L.; Guerts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, JE; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, SM; Guo, Y.; Gupta, A.; Gutierrez, TD; Hallman, TJ; Hamed, A.; Hardtke, D.; Harris, JW; Heinz, M.; Henry, TW; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, GW; Huang, HZ; Huang, SL; Hughes, EW; Humanic, TJ; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, WW; Janik, M.; Jiang, H.; Jones, PG; Judd, EG; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, VY; Kiryluk, J.; Kisiel, A.; Kislov, EM; Klay, J.; Klein, SR; Koetke, DD; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, VI; Krueger, K.; Kuhn, C.; Kulikov, AI; Kumar, A.; Kutuev, RK; Kuznetsov, AA; Lamont, MAC; Landgraf, JM; Lange, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lehocka, S.; LeVine, MJ; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lindenbaum, SJ; Lisa, MA; Liu, F.; Liu, L.; Liu, QJ; Liu, Z.; Ljubicic, T.; Llope, WJ; Long, H.; Langacre, RS; Lopez-Noriega, M.; Love, WA; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, GL; Ma, JG; Ma, YG; Magestro, D.; Mahajan, S.; Mahapatra, DP; Majka, R.; Mangotra, LK; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, JN; Matis, HS; Matulenko, YA; McClain, CJ; McShane, TS; Meissner, F.; Melnick, Y.; Meschanin, A.; Miller, ML; Minaev, NG; Mironov, C.; Mischke, A.; Mishra, DK; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, CF; Morozov, DA; Munhoz, MG; Nandi, BK; Nayak, SK; Nayak, TK; Nelson, JM; Netrakanti, PK; Nikitin, VA; Nogach, LV; Nurushev, SB; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pal, SK; Panebratsev, Y.; Panitkin, SY; Pavlinov, AI; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Petrov, VA; Phatak, SC; Picha, R.; Planinic, M.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, AM; Potekhin, M.; Potrebenikova, E.; Potukuchi, BVKS; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ravel, O.; Ray, RL; Razin, SV; Reichhold, D.; Reid, JG; Renault, G.; Retiere, F.; Ridiger, A.; Ritter, HG; Roberts, JB; Rogachevskiy, OV; Romero, JL; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarsour, M.; Savin, I.; Sazhin, PS; Schambach, J.; Scharenberg, RP; Schmitz, N.; Schweda, K.; Seger, J.; Seyboth, P.; Shahaliev, E.; Shao, M.; Shao, W.; Sharma, M.; Shen, WQ; Shestermanov, KE; Shimanskiy, SS; Sichtermann, E.; Simon, F.; Singaraju, RN; Skoro, G.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, TDS; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, AAP; Sugarbaker, E.; Suire, C.; Sumbera, M.; Surrow, B.; Symons, TJM; de Toledo, AS; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, AH; Tarnowsky, T.; Thein, D.; Thomas, JH; Timoshenko, S.; Tokarev, M.; Trainor, TA; Trentalange, S.; Tribble, Robert E.; Tsai, OD; Ulery, J.; Ullrich, T.; Underwood, DG; Urkinbaev, A.; van Buren, G.; van Leeuwen, M.; Molen, AMV; Varma, R.; Vasilevski, IM; Vasiliev, AN; Vernet, R.; Vigdor, SE; Viyogi, YP; Vokal, S.; Voloshin, SA; Vznuzdaev, M.; Waggoner, WT; Wang, F.; Wang, G.; Wang, G.; Wang, XL; Wang, Y.; Wang, Y.; Wang, ZM; Ward, H.; Watson, JW; Webb, JC; Wells, R.; Westfall, GD; Wetzler, A.; Whitten, C.; Wieman, H.; Wissink, SW; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Z.; Xu, ZZ; Yamamoto, E.; Yepes, P.; Yurevich, VI; Zanevsky, YV; Zhang, H.; Zhang, WM; Zhang, ZP; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, AN; Braem, A.; Davenport, M.; Cataldo, GD; Bari, DD; Martinengo, P.; Nappi, E.; Paic, G.; Posa, E.; Puiz, F.; Schyns, E.; Star Collaboration; STAR-RICH Collaboration.The results from the STAR Collaboration on directed flow (v(1)), elliptic flow (v(2)), and the fourth harmonic (v(4)) in the anisotropic azimuthal distribution of particles from Au+Au collisions at root s(NN) = 200 GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v(2), scaling with the number of constituent quarks and parton coalescence are discussed. For v(4), scaling with v(2)(2) and quark coalescence are discussed.Item Azimuthal di-hadron correlations in d plus Au and Au plus Au collisions at root s(NN)=200 GeV measured at the STAR detector(American Physical Society, 2010) Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Leyva, A. Davila; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Evdokimov, O.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hamed, A.; Han, L. -X; Harris, J. W.; Hays-Wehle, J. P.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Horner, M. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, N.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitrovski, M. K.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldag, E. W.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sangaline, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I. -K; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, J. B.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, J.; Zhong, C.; Zhou, J.; Zhou, W.; Zhu, X.; Zhu, Y. H.; Zoulkarneev, R.; Zoulkarneeva, Y.; STAR Collaboration.Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.Item Balance functions from Au+Au, d+Au, and p+p collisions at root s(NN)=200 GeV(American Physical Society, 2010) Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Bunzarov, I.; Burton, T. P.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Leyva, A. Davila; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Evdokimov, O.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hamed, A.; Han, L-X; Harris, J. W.; Hays-Wehle, J. P.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Huang, B.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C-H; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, N.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Luo, X.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitrovski, M. K.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldag, E. W.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Powell, C. B.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sangaline, E.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; De Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I-K; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, J. B.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, J.; Zhong, C.; Zhou, J.; Zhou, W.; Zhu, X.; Zhu, Y. H.; Zoulkarneev, R.; Zoulkarneeva, Y.; STAR Collaboration.Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.Item ''Bare'' single-particle energies in Ni-56(American Physical Society, 1996) Trache, L.; Kolomiets, A.; Shlomo, S.; Heyde, K.; Dejbakhsh, H.; Gagliardi, Carl A.; Tribble, Robert E.; Zhou, XG; Jacob, VE; Oros, AM.The structure of the low-lying levels in the mirror nuclei Ni-57 and Cu-57 is described within the extended unified model. The problem of single-particle energies in Ni-56 is treated in detail. ''Bare'' single-particle energies are extracted from existing experimental data for the energy levels in Ni-57 and Cu-57 by carefully considering the influence of the coupling to excitations of the core. Important contributions arise, influencing especially the results on the spin-orbit splitting. The differences between the Coulomb energy shifts of various orbitals in Ni-56 are discussed and compared with those resulting from Hartree-Fock calculations carried out using a broad range of Skyrme interactions. The parameters of the Woods-Saxon potential reproducing these neutron ''bare'' single-particle energies and the charge root-mean-square radius of Ni-56 are extracted. It is demonstrated that the contributions associated with the Thomas-Ehrman effect and the electromagnetic spin-orbit interaction are important and large enough to account for the differences between the Coulomb energy shifts of the single-particle levels in Ni-56.Item Beam-energy and system-size dependence of dynamical net charge fluctuations(American Physical Society, 2009) Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sanchez, M. Calderon de la Barca; Callner, J.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Moira, M. M.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Dictel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Edwards, W. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, Carl A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kumar, A.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C. -H; LeVine, M. J.; Li, C.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H. S.; Matulenko, Yu A.; McShane, T. S.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, Saskia; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Rykov, V.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X. -H; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Tram, V. N.; Trattner, A. L.; Trentalange, S.; Tribble, Robert E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasconcelos, G. M. S.; Vasilevski, I. M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yepes, P.; Yoo, I. -K; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, H.; Zhang, S.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.; STAR Collaboration.We present measurements of net charge fluctuations in Au+Au collisions at s(NN)=19.6, 62.4, 130, and 200 GeV, Cu+Cu collisions at s(NN)=62.4 and 200 GeV, and p+p collisions at s=200 GeV using the dynamical net charge fluctuations measure nu(+-,dyn). We observe that the dynamical fluctuations are nonzero at all energies and exhibit a modest dependence on beam energy. A weak system size dependence is also observed. We examine the collision centrality dependence of the net charge fluctuations and find that dynamical net charge fluctuations violate 1/N(ch) scaling but display approximate 1/N(part) scaling. We also study the azimuthal and rapidity dependence of the net charge correlation strength and observe strong dependence on the azimuthal angular range and pseudorapidity widths integrated to measure the correlation.Item Beta decay of Ga-62(American Physical Society, 2003) Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.We report a study of the beta decay of Ga-62, whose dominant branch is a superallowed 0(+)-->0(+) transition to the ground state of Zn-62. We find the total half-life to be 115.84+/-0.25 ms. This is the first time that the Ga-62 half-life has been measured with a purified source. We find that (0.120+/-0.021)% of the beta decays are followed by gamma cascades that pass through the Zn-62 2(+) first excited state at 0.954 MeV. The branching ratio to the first-excited 0(+) state in Zn-62 at 2.33 MeV is <0.043%. We conclude that the branching ratio for the superallowed transition is 99.85(-0.15)(+0.05)%.