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ABSTRACT 
 

Hydrodynamic Analysis of Mooring Lines Based on Optical Tracking Experiments. 

(December 2007) 

Woo Seuk Yang, B.S.; M.S., Chung-Ang University 

Chair of Advisory Committee: Dr. Richard Mercier 

                          

Due to the complexity of body-shape, the investigation of hydrodynamic forces on 

mooring lines, especially those comprised of chain segments, has not been conducted to 

a sufficient degree to properly characterize the hydrodynamic damping effect of mooring 

lines on the global motions of a moored offshore platform. In the present study, an 

experimental investigation of the hydrodynamic characteristics of various mooring 

elements is implemented through free and forced oscillation tests.  Since no direct 

measurement capability for distributed hydrodynamic forces acting on mooring line 

segments such as chain and wire rope is available yet, an indirect measurement 

technique is introduced. The technique is based on the fact that hydrodynamic forces 

acting on a body oscillating in still water and on a stationary body in an oscillatory flow 

are equivalent except for the additional inertia force, the so-called Froude-Krylov force, 

present in the latter condition. The time-dependent displacement of a slender body 

moving in calm water is acquired through optical tracking with a high speed camera. The 

distributed hydrodynamic measurements are then used to obtain the force by solving the 

equation of motion with the boundary condition provided from tension measurements. 



 iv 

Morison’s equation is employed along with Fourier analysis to separate the inertia and 

drag components out of the total fluid force. Given the experimentally-derived 

information on hydrodynamic behavior, the resistance provided by a mooring line to a 

floating structure is briefly studied in terms of damping and restoring force in a coupled 

dynamic system. 
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CHAPTER I 

1. BACKGROUND AND MOTIVATION 

 

1.1. Introduction 

 

The design of a floating offshore structure primarily requires the wave and current 

loading information on the floating body itself.  In addition, knowledge of the 

hydrodynamic forces exerted on slender body tether components such as mooring lines 

and risers is required for the accurate analysis of the global response of the floating 

structure.  In particular, the inertia and damping contributions of moorings and risers to 

the overall system become quite significant as sea-depth increases.  Generally, model 

tests are implemented to verify the numerical simulation results of moored body motion 

for design purposes.  Due to limitations of the force model for slender bodies (the 

Morison equation), an important source of uncertainty in the validation of numerical 

models using experimental model test results or field measurements is the empirical 

force transfer coefficients that are the basis of the modeling approach. 

Numerous investigations of time-dependent hydrodynamic forces acting on slender 

bodies have been conducted.  These investigations were normally confined to 

laboratory experiments designed to verify and calibrate the well-known Morison 

equation.  A limited number of field tests have been performed for the wider range of 

parameters (Reynolds number, Keulegan-Carpenter number) of interest in the design of 

offshore structures that could not be easily created in the laboratory (Dean & Aagaard, 

���������������������������
This dissertation follows the style and format of Journal of Ocean Engineering. 
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1970; Kim and Hibbard, 1975). However field measurement of Morison force 

coefficients is complicated by the uncertainty of the ocean environment and the high cost 

of the experimental set-up.  Laboratory model tests have been carried out under a 

variety of flow conditions, including impulsively started flows (Sarpkaya, 1966), 

uniformly accelerating flows (Sarpkaya and Garrison, 1963), and oscillating flows 

(Keulegan and Carpenter, 1958), to provide an extensive amount of rational data for the 

design of offshore structures. 

The empirical Morison equation was proposed about a half century ago for the 

estimation of fluid force on a pile.  It has been widely used even up to the present time 

since no better formula has been introduced to replace it.  The Morison equation is a 

force decomposition formula that, under viscous, unsteady flow conditions, represents 

the total force exerted by the fluid on a slender body as the sum of a drag force and an 

inertia (or added mass) force.  Each force term has its own associated force transfer 

coefficient.  The so-called drag coefficient and inertia (or added mass) coefficient are 

each strongly dependent on the shape of the body.  Thus, many researchers have 

focused on finding the correct value of these coefficients for several types of bodies (for 

example, spheres, plates, and especially circular cylinders) under diverse flow conditions 

mentioned above.  Nevertheless, empirical data on Morison force coefficients for 

chain-shaped bodies is scarce. 

Mooring lines for deepwater floating structures generally comprise a number of 

different elements, such as studlink or studless chain, sheathed or unsheathed wire or 

polyester rope, and various types of connectors.  Sheathed wire or polyester rope is 

circular in cross section so that the hydrodynamic force coefficients can be readily 
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obtained from published data on cylindrical rod elements.  Due to lack of available data, 

the drag coefficients for chains are typically assumed to be the same as for a rod, but 

with an equivalent diameter equal to twice the bar size of the chain link. Occasionally, 

the manufacturers provide the drag coefficients for their own chain obtained from simple 

towing tests.  Hwang (1986) conducted towing tests to estimate the drag coefficients for 

two different chain types and marine cables for steady state flow conditions.  It can be 

inferred that there is no single set of representative values of such coefficients for all 

different kinds of chain.  Thus, efficient, standardized measurement techniques are 

needed for estimation of force coefficients of mooring elements. 

 The design of a moored floating system generally involves both numerical 

simulation and model tests.  For the model tests, we are often faced with the problem of 

how to relate the experimental results to full scale while accounting for modeling errors.  

In the case of mooring systems, apart from viscous scale effects, we have to consider 

that the chain and cable elements used in the model scale mooring will likely not be 

geometrically similar to the prototype.  Consequently there are rational reasons for 

employing different Morison force coefficients at model and prototype scale.  However 

since there is a lack of data on drag and inertia forces for chains and, to our knowledge, 

no available direct experimental investigations of mooring line dynamics at a level of 

detail sufficient to isolate the hydrodynamic forces, there is inherently a large degree of 

uncertainty in the experimental and numerical modeling of hydrodynamic forces on 

mooring lines.  

Complexity of shape is one of the major factors that complicates experiments with 

chain.  Chain comprises interconnected links which have the shape of elongated 
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circular rings, so that direct force measurement on the body (i.e. the chain link) using a 

force gauge is difficult.  Since the links are free to rotate at the interconnections to a 

certain extent, the torsional motion of the chain might be a consideration in the analysis 

even for small lengths of chain.  Also, as compared to simple body shapes, the complex 

geometry of chain links causes more complex wake flow kinematics.  For these reasons, 

predicting the hydrodynamic loading on moving chain is quite challenging. 

In the present research, an investigation of the hydrodynamic force acting on chain 

and cable elements is implemented by laboratory model tests employing an optical 

tracking system.  The tests involve free and forced oscillations of long chain or cable 

segments under conditions representative of mooring systems in still water.  Laboratory 

tests and data analysis were planned for both two dimensional and three dimensional 

motion conditions.  Unfortunately because of camera limitations and obstructions in the 

basin it was not possible to perform three dimensional experiments at this time. 

1.2. Literature Review 

1.2.1. Analysis of Hydrodynamic Force 

 

Fluid loading on an object induced by a flow around it has been highly investigated 

by a number of hydrodynamicists in engineering and applied mathematics. Generally, 

fluid loading can be categorized into viscous fluid effects and irrotational fluid effects 

according to the nature of the problem addressed.  For the irrotational fluid effects, the 

flow can be represented by potential theory, excluding the complicated behavior very 

near the structure.  However, viscous flow around an object generally involves 
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formation of a wake, with vortex generation and separation which strongly disturbs the 

velocity-pressure field around the body.  Due to the viscosity of the fluid, the flow in 

the boundary layer evolves into a vortex by the shearing process, the vortex separates 

from the surface of the body, thereby forming a wake.  By contrast, the flow outside the 

boundary layer is considered to be ideal potential flow without the viscous boundary 

layer effect.  Although numerous studies have been conducted, many characteristics of 

these phenomena remain difficult to model, such as the size of the wake, formation and 

motion of vortices, flow separation points, etc. This is due not only to the complexity of 

the flow field but also because of the diversity of flow conditions and of body shapes.  

Thus, certain specific flow conditions with certain body shapes have been mainly studied 

to gain better understanding of the flow field and fluid loading effects. 

Two main approaches have been developed for calculating the hydrodynamic force 

on a body in an oscillatory flow: one is based on the potential theory and the other is 

based on the Navier-Stokes equations.  The former is commonly implemented by 

superposing the viscous effects on the solution of the ideal fluid behavior.  The latter 

can be categorized again into several different approaches in terms of the formulation of 

the governing equations.  Both methodologies have been implemented theoretically and, 

in some case, experimental observations were required to complement the theoretic 

approaches. 

O.S. Madsen (1986) developed the potential theory for a uniformly accelerated flow 

of an ideal fluid.  The combined potential φ , which is comprised of an undisturbed 

flow potential UΦ  and a disturbed flow potential DΦ  due to the presence of the body, 

was employed for the loading and flow perturbation was applied to obtain the disturbed 
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flow potential.  The hydrodynamic force is obtained by integrating the dynamic 

pressure over the body surface. 

2( / ( ) / 2)n
s s

F P n ds t n dsρ φ φ= − = ∂ ∂ + ∇� �
� �              (1.1) 

in which nonlinear effects arise from using the Lagrangian derivative in the transient 

pressure term and directly from the velocity-squared term.  According to the potential 

flow formulation, the derived hydrodynamic force has a contribution only from the 

inertia force, not from viscous drag.   

James Lighthill (1979) suggested that the inertia force could be expressed to second-

order by superposing the second order loading due to both the quadratic potential and 

quadratic interactions associated with the first-order potential to the linear loading 

associated with the first-order potential,  In the Morison force limit the second-order 

loading resulting from the linear potential was considered in a similar manner as Madsen 

but including one more contribution, the so-called waterline force generated by the 

difference between the hydrostatic pressure and the transient pressure.  The waterline 

force, which only applies to surface-piercing bodies, is written as follows and added to 

the above equation: 

2

2w
w

F dw
g t

ρ φ∂� �= � �∂� �
��                        (1.2) 

Both the Madsen and Lighthill approaches give a correction to the inertia term in 

Morison’s equation by adding a term associated with a nonlinear contribution. 

T.E. Horton and J.W. Rish (1981) devised the Inertia Pressure Concept (IPC) as an 

empirical wave force algorithm.  This concept enables a viscous correction to the 

pressure distribution associated with the potential flow by integrating the pressure over 
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the front (before separation) and rear surface (after separation) of the cylinder 

respectively with two time-dependent empirical coefficients, fC  and rC , which 

account for the flow separation and wake sweeping.  The pressure term is obtained 

from a nonlinear Euler-Bernoulli equation, 

21
( )

2 rel

P
q G t

t
φ

ρ
∂
∂

+ + =                      (1.3) 

where qrel denotes the fluid velocity relative to the body.  The force algorithm is 

expressed in the following form: 

0

0

2

cos cos
S

S

m m
f r I D R

F dF
D L D L

P P P P
C d C d F F F

π

θπ

θ

ρ ρ

θ θ θ θ
ρ ρ

=

− −= − − = + +

�

� �

   (1.4) 

where sθ  denotes the circumferential angle on the cylinder where flow separation 

occurs, D  and L  are the diameter and length of the cylinder, subscript m indicates the 

minimum pressure location on the surface of cylinder, and IF , DF , and RF  represent 

the inertia, drag and interaction terms.  It is noteworthy that the velocity-acceleration 

interaction term in addition to the drag and inertia force terms in the Morison equation 

were included in the algorithm.  Furthermore, the IPC algorithm can in principle model 

the temporal behavior of the force coefficients and it suggests an interdependency of the 

drag and inertia force coefficients. 

T. Sarpkaya and C.J. Garrison (1963) investigated the uniform flow with constant 

acceleration around a circular cylinder by combining the analytically-derived equations 

for the complex potential ( iω φ ψ= + ) with a discrete vortex whose characteristics were 

obtained experimentally.  The constant acceleration condition that was used enabled a 
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dimensional analysis to exclude the higher order accelerations on which the force might 

depend.  The hydrodynamic force was formulated with a general form of the Blasius 

theorem which can separate the force into the total drag and lift components.  Through 

dimensional analysis and the conventional Morison’s equation, formulations were 

obtained respectively for the drag and inertia coefficients.  This research showed that 

there is a unique relationship between the drag and inertia coefficients. 

As mentioned earlier, a number of approaches are available for hydrodynamic 

analysis with the Navier-Stokes equations.  These include: a) direct calculation with 

boundary conditions, b) control volume approach, c) coupled analysis with the equation 

of motion for the body and d) stream function-vorticity formulation.  The stream 

function-vorticity formulation is based on non-primitive variables, while the rest are 

formulated with the primitive variables which are the velocities and pressure.  General 

forms of the Navier-Stokes equations and the vorticity transport equation are written as 

2u
u u p u

t
ρ µ∂

∇ ∇ ∇
∂

� �
+ ⋅ = − +� �

� �

�
� � �   and  2( )u

t
ω ω ν ω∂

∇ ∇
∂

= × × =
�

� ��     (1.5) 

S. Murashige, et al (1989) solved the flow field around an oscillating circular 

cylinder by direct calculation using a body-fitted coordinate system.  In their study, the 

Navier-Stokes equations were solved in the form of partial differential equations with 

discretized time and spacing.  An additional Poisson equation for pressure was 

introduced for solving the pressure prior to the calculation of the velocity through the 

Navier-Stokes equations. The comparison of the computed time-dependent in-line force 

with published experimental data was in good agreement at low Keulegan-Carpenter 

numbers. 
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M. Braza, et al (1985) applied the control volume approach for the unsteady flow of 

an incompressible viscous fluid past a cylinder in a logarithmic-polar coordinate system 

by employing the finite volume approximation in conjunction with a predictor-corrector 

pressure scheme.  The pressure is deduced by combining the Navier-Stokes equations 

and a Poisson equation for an auxiliary potential function φ .  The Poisson equation 

was only used for pressure correction through an iterative method.  The hydrodynamic 

force was obtained by integrating the wall pressure and wall vorticity, which represent 

the contributions of the pressure and viscous forces, respectively. 

T.E. Horton and M.J. Feifarek (1981) presented a wave force formulation, the so-

called Vorticity Transport Integral Concept (VTIC), in which the Navier-Stokes 

equations for the unsteady flow of an incompressible viscous fluid are solved by 

integration over an arbitrary volume of fluid surrounding the body through Green’s 

transformation theorem. The usual acceleration operator is replaced by Lagrange’s 

relationship 

( )/ 2
Du u

u u u
Dt t

ω∂
∇

∂
= + × +�

� �
� � �                 (1.6) 

in formulating the vorticity transport concept of the equations of motion, which is 

different from the general vorticity transport equation [Eq.(1.5)].  Since vorticity is 

considered to be transported from the boundary layer volume to the wake volume, 

integration is required to be taken only over the flow near the body, not over the entire 

flow.  The analytical force formulation which takes account of force contributions from 

the wake inertia defect and vorticity transport can predict the hydrodynamic loading of 

transient flow on a submerged body. 

One of the vorticity-based formulations is the so-called “vortex method” which 
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approximates the distribution of vorticity by a set of discrete point vortices and thus 

follows the Lagrangian flow concept.  Using this method, P.A. Smith and P.K. Stansby 

(1988) investigated the viscous flow of an incompressible fluid past a circular cylinder in 

a polar coordinate system.  Vorticity is created from solving the Poisson equation for 

the stream function by means of a Fourier transform technique, and distributed on the 

cylinder surface to satisfy the no-slip condition.  Then the processes of viscous 

diffusion and convection are accomplished respectively by a linear diffusion equation 

and the nonlinear Euler equation, both of which are separate from the vorticity transport 

equation.  The in-line and transverse forces were calculated using two different 

formulations and the comparison between both results showed good agreement; one is 

associated with the pressure distribution and the other with the cross product of velocity 

and vorticity.  Comparisons made with experimental data and results from a Eulerian 

scheme showed good agreement and indicated the better stability of the Lagrangian 

scheme compared to the Eulerian scheme. 

P. Justesen (1990) presented the solution to the stream function-vorticity formulation 

for a circular cylinder in planar oscillating flow by adopting an Eulerian finite difference 

scheme.  A logarithmic-polar coordinate system was applied to resolve the large 

gradients near the cylinder surface.  The stream function was split into two parts: (a) 

one due to the prescribed externally driven potential flow, and (b) the other representing 

a correction due to the viscosity.  Unlike the vortex method, vorticity was obtained 

from the vorticity equation using the prescribed stream function (a) which is derived 

from the analytical solution of the Laplace equation.  The Poisson equation was used to 

acquire the stream function (b) which was combined with the stream function (a) to yield 
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the total stream function.  The tangential momentum equation at the cylinder surface 

was derived for the pressure calculation in the same way as for the vortex method.  The 

surface pressure and the surface stress associated with vorticity were integrated over the 

cylinder surface for the calculation of the total force. 

Karl W. Schulz and Y. Kallinderis (2000) developed a numerical method for the 

solution of coupled fluid-body dynamics in three dimensions.  The rigidly-mounted 

elastic body structural response was coupled with the incompressible Navier-Stokes 

equations to address the flow-structure interaction.  Applications of fixed and freely 

vibrating structures were presented to give a comparison with experimental observations. 

 

1.2.2. Methods for Estimation of Morison Hydrodynamic Force Coefficients 

 

As mentioned at the outset, for the estimation of force on a slender body Morison’s 

formula has been mostly used and trusted to a certain degree, although a number of 

alternative theoretical and numerical approaches have been developed in the past half 

century.  Some efforts have been dedicated to identifying ways to modify the existing 

equation to more precisely model the various force mechanisms, however the main 

stream of research has been focused on the estimation of suitable force transfer 

coefficients.  The following section briefly reviews various methods of analysis for the 

determination of the hydrodynamic coefficients, including both deterministic and 

stochastic approaches. 
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1.2.2.1. Deterministic Approach 

 

The Fourier averaging technique first given by Keulegan and Carpenter (1958) is to 

reconcile the Morison equation with the Fourier series representation of the measured 

force, by taking the first harmonic only and applying the orthogonality of trigonometric 

functions to estimate each coefficient.  The reconciled form of the Morison equation is 

expressed as 

2

2

2
sin cos cosm d

m

F
C t C t t

U D KC
π ω ω ω

ρ
= −             (1.7) 

where mU  and ω  denote the maximum velocity and the angular frequency of 

harmonic flow, respectively.  Using this method, J.R. Driscoll (1972) analyzed test data 

for the simple harmonic motion of an oscillating cylinder in still water and found that the 

drag coefficient is a function of both Re and KC but the added mass coefficient primarily 

depends on KC. 

C.J. Garrison, et al (1977) conducted similar model tests to those of Driscoll but 

applied a least-square analysis to determine the drag and added mass coefficients.  

Specifically, by defining the squared error between the measured and calculated forces 

as 

22 )( CM FFE −=                          (1.8) 

the drag and added mass coefficients are determined by minimizing the squared error 

according to 

2

0
d

d E
d C

=    and   
2

0
m

d E
d C

= .                  (1.9) 
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Unlike Driscoll, he suggested that both coefficients strongly depend on Re except at high 

Re.  It was also shown that, when KC decreases, the drag and added mass coefficients 

approach respectively to zero and unity, which are the values associated with potential 

flow.   

G. Rodenbusch and C. Kallstrom (1986) studied the forces on a large cylinder 

undergoing random directional oscillation in two dimensions transverse to the cylinder 

axis.  The least-square method was used to estimate the force coefficients in 

conjunction with a velocity tracking scheme in which the component of the force at each 

instant of time is aligned with the instantaneous velocity.  However this analysis 

scheme yields poor estimates of the added mass coefficient since the acceleration is not 

aligned with the direction of the velocity in which the force is considered.  Thus, it has 

been inferred that using an alternative acceleration tracking scheme for the added mass 

force might yield better estimates for the added mass coefficient. 

P.W. Bearman, J.R. Chaplin, et al (1985) carried out measurements of the fluid 

loading on a vertical and a horizontal cylinder in periodic and random waves under 

controlled laboratory conditions.  A time averaging version of the Fourier technique 

and least-square error minimization were employed to evaluate the hydrodynamic 

coefficients for the vertical and horizontal cylinder, respectively.  The Fourier analysis 

method used by Bearman was different from the others mentioned above in that the first 

six Fourier components of the force and velocity were considered, thereby providing 

better accuracy.  Bearman concluded that Morison’s equation cannot provide a good 

representation of the force for the horizontal cylinder, because due to wake rotation the 

transverse component of vortex shedding cannot be separated from the in-line drag 
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component in Morison’s equation. 

T. Sarpkaya (1976a, b) studied the characteristics of periodic flow past a bluff body.  

He analyzed model test results with Morison’s equation to correlate the force data with 

the drag and inertia coefficients.  Three different methods were applied: 1) Fourier 

analysis, 2) least-square method, and 3) modified least-square method with the squared 

error defined as 222 )( CMM FFFE −= .  The last method is similar in form to the 

ordinary least-square method except for the addition of the square of the measured force 

as a weighting factor.  It was shown that the results from all three methods differ by 

only one or two percent from each other. 

The system identification technique may also be used for estimation of the 

hydrodynamic coefficients.  The technique has the advantage of being able to address 

the time-dependent problem, while other techniques referenced above are associated 

with time-averaged or frequency-averaged force modeling.  P. Kaplan, C.W. Jiang and 

F.J. Dello Stritto (1981) analyzed the wave measurement data from the Ocean Test 

Structure (OTS) by applying the sequential estimation technique, which is used to 

estimate the state variables and the system parameters in a noisy nonlinear dynamical 

system.  The coupled first-order differential equations from Morison’s equation were 

constructed in the x-y directions based on the six state variables (including the force 

coefficients) and solved via an integration scheme in matrix form to yield the time-

varying coefficients and velocity fields.  They suggested that this method is more 

robust than the spectral-fitting technique and that Morison’s formula is suitable for the 

representation of wave force by comparison with the alternative force model in which 

the velocity-squared drag force term ( u|u| ) is replaced by the sum of a linear (u) and a 
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cubic (u3) velocity term. 

 

1.2.2.2. Stochastic Approach 

 

The studies referenced in the previous section all involved deterministic analysis 

generally implemented in the time domain.  Since waves in the ocean are generally 

considered to be a mildly non-Gaussian random process, the wave forces on a body and 

the induced body responses should also be modeled as a random process.  Based on this 

idea, a diversity of stochastic approaches combined with linear wave theory and applied 

to representations of Morison’s equation have been proposed in order to provide 

improved estimates of wave force for the design of offshore structures. 

L.E. Borgman (1965, 1967) carried out spectral analysis of the force on a body in a 

turbulent fluid by employing a zero-memory, nonlinear transformation of the bivariate 

Gaussian process for the velocity and acceleration of the fluid.  The covariance of the 

force was developed by deriving the probability density function and the moment 

generating function, and then expressed with a series expansion.  The partial sums of 

the series were transformed into the spectral density of a Morison-type force. 

4
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1
2D DK D Cρ=   and   21

4M mK D Cπ ρ=  

where 2
Vσ  is the variance of velocity, and ( ), ( ), ( )FF VV AAS S Sω ω ω  denote the spectral 

density of force, velocity and acceleration of fluid, respectively.  The determination of 
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the drag and inertia coefficients was achieved by a least square fitting of the theoretical 

covariance model to the measured force covariance.   

Later Borgman (1969) developed a different spectral analysis approach based on a 

digital filter concept which inter-relates the fluid velocity and acceleration with the wave 

surface elevation through a linear integral operator.  To simplify the application of the 

digital filter to Morison’s formula, the nonlinear drag term was approximated by 

statistical least square fitting of the velocity process.  In this research, the force 

coefficients were determined by applying the theoretical constraint that the inertia and 

drag force respectively equal zero below the wave crests and the wave zero crossing 

points. 

W.J. Pierson and P. Holmes (1965) studied the force on a vertical pile in shallow 

water with irregular long-crested waves in a probabilistic manner.  The probability 

function of force was developed using a joint probability density function of velocity and 

acceleration to avoid difficulties with the representation of force in terms of covariance 

and spectra due to the non-Gaussian nature of the drag term.  The method of moments 

was applied to express the second and fourth statistical moments of force as 

2 2 2 2 4[ ] 3M A D VE F K Kσ σ= +  

(1.11)  

( )4 4 4 2 2 2 4 4 8[ ] 3 6 35M A M A D V D VE F K K K Kσ σ σ σ= + +  

Later, many researchers including R.G. Tickell (1977) and R. Burrows (1977) further 

developed the method of Pierson and Holmes to analyze the wave loading on 

assemblages of offshore structural members (as opposed to a single object).  

While most statistical approaches for the estimation of the hydrodynamic force 
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coefficients were based on the averaged value of the wave force, C.L. Bretschneider 

(1967) evaluated the coefficients using peak forces derived at or ahead of the wave crest 

since the maximum probable values of wave height and force are preferred in the design 

of offshore structures.  In order to suggest a better selection of the coefficients for the 

design wave, Bretschneider attempted to correlate the empirical coefficients with the 

probability distribution of wave heights via evaluation of the terms “correlation drag (or 

inertia) coefficient” associated with the crest (or the wave zero-crossing). 

T. Bostrom (1987) investigated several different stochastic approaches to model the 

wave force on an object: 1) the method of moments, 2) the maximum likelihood method, 

3) the least square fitting of a spectrum, 4) cross-spectra between surface elevation and 

force, and 5) fitting time series of force by an extended Kalman filter.  These methods 

may be grouped into three categories: the first two are applied in the probability domain, 

the last is applied in the time domain, and the other are applied in the frequency domain.  

Results from the probability and frequency domain methods were in close agreement, 

however the results from the time domain method displayed somewhat larger values of 

force coefficients than those from the other methods. 

 

1.2.3. Mooring Line Damping 

 

The response of a moored floating structure in irregular seas is generally determined 

by the first-order wave frequency forces and the second-order low frequency drift forces.  

While the motion due to the first-order forces can be straightforwardly evaluated through 

linear wave radiation/diffraction theory, the resonant low frequency drift motions of the 
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floater due to second-order forces are primarily controlled by damping effects from the 

hull and mooring systems.  Modeling of these damping effects involves many 

uncertainties because of the nonlinear mechanisms, the selection of force coefficients, 

the effect of seabed friction, etc.  System damping is contributed by several 

components: the wave drift damping, the wind damping, the current and viscous flow 

damping on the hull, and the mooring line damping.  Among them, the studies focused 

on the mooring line damping are relevant to this research and will be reviewed briefly. 

Several different approaches have been developed to model mooring-induced 

damping.  E. Huse (1986) employed the dissipated energy method with the catenary 

equation to estimate the low frequency mooring damping.  The friction force (between 

the mooring line and the seabed) and drag force which provide the main contributions to 

the mooring line damping were considered separately and the energy dissipated by the 

drag force was obtained by integrating the force over a cycle ( 2 DE F dη∆ = � ), where 

the top end of the line was assumed to move horizontally and η  is the displacement of 

the mooring line in the normal direction.  It was shown that the mooring line drag can 

reduce the second order motion by 20 ~ 25%, representing one-third of the total mooring 

system damping, while the friction damping contributes only a small portion to the total 

damping. 

Further developing Huse’s approach, J.E.W. Wichers and R.H.M. Huijsmans (1990) 

incorporated the dynamic effect of the chain with the dissipated energy method for the 

analysis of mooring damping on the low frequency motion. The equation of motion 

based on the lumped mass method was solved for the dynamic behavior of the chain, and 

the product of low frequency velocity and horizontal component of chain force at the 



 19 

chain table was integrated to determine the effect of damping ( ( )E T x x dt= � � ).  The 

combined low and high (wave) frequency effect on damping was analyzed and it was 

concluded that the chain damping contribution to the total damping may increase 

significantly due to the superposition of low frequency surge and high frequency heave 

motions. 

A similar approach was pursued by W.C. Webster (1995), but including the internal 

(material) damping of the mooring line in addition to the drag damping.  Through 

various parametric studies, an attempt was made to provide comprehensive information 

for the optimal design of mooring lines so as to access a maximum amount of damping.  

The studies investigated variations in pretension, motion amplitude and frequency, drag 

coefficient, stiffness, current and scope.   

Instead of using estimates of the low frequency-averaged chain damping described 

above, Dercksen, et al (1992) presented a direct simulation method for the correct 

instantaneous low and high frequency motions of a turret-moored tanker.  For the 

correct coupling between high and low frequency motion, each equation of motion for 

the tanker and mooring lines is solved respectively for the low frequency surge motion 

and for the combined high and low frequency motion.  The linear and quadratic transfer 

functions derived from wave diffraction theory are used to force the high and low 

frequency motions of the tanker.  It was suggested that the direct coupling of high and 

low frequency motions can predict the correct momentary chain damping. 

Yuh-Lin Hwang (1998) simulated a surge decay test with a numerical model of the 

coupled tanker and mooring-riser system to evaluate the mooring line damping.  

Determination of the mooring line damping, which was linearized based on the principle 
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of energy conservation, was conducted by analyzing the peaks of the free vibration 

response through a log-decrement technique. The results indicated that with increasing 

water depth mooring damping increases due to the effects of current and the coupling 

between the high and low frequency motions, and the riser contribution considerably 

increases the total mooring damping as well. 

M.S. Triantafyllou, et al (1994) introduced the drag amplification factor to calibrate 

the conventional drag coefficient to reflect the effect of vortex-induced vibrations (VIV) 

and of wave-slow motion interaction.  The amplification due to VIV is caused by the 

substantial changes in the vortex formation process that occur during VIV.  The 

amplification due to the motion interaction is a nonlinear function of amplitude and 

frequency of the wave motions.  They proposed that considering both effects on drag 

might considerably increase the total mooring damping to a level compatible to the 

wave-drift damping associated with the vessel motions. 

 

1.3. Objectives and Scope 

 

In the previous section, a number of studies associated with the hydrodynamic force 

acting on a slender body were reviewed mainly in respect to modeling methodology.  

However, it can be noted that none of these studies seem to be applicable to the 

calculation and decomposition of fluid force on a moving object with a complicated 

shape, such as chain links, due to the numerical and experimental limitations introduced 

by such complexity.  Accordingly, there is a need for an alternative approach of force 

estimation which can minimize the problem related to body shape and which can be 
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brought to realization when the conventional slender body dynamics formulation is 

combined with the advanced optical tracking of body motion in calm water. 

The ultimate objective of the present research is to develop efficient, repeatable, 

automated, low cost, and standardized measurement techniques for estimation of 

Morison drag and inertia coefficients for slender body elements at prototype and model 

scale over the full operating range of Re and KC number for three-dimensional flow 

situations that include combined non-collinear slow drift and wave frequency motions. 

This is accomplished by the works listed below: 

1. Modeling the hydrodynamic force acting on chain and cable elements is done by 

estimation of the rational force transfer coefficients (drag and added mass 

coefficients) through laboratory model tests in two dimensional conditions.  For 

the full operating range of Reynolds number and Keulegan-Carpenter number, 

both small and relatively large scale model tests are carried out for two different 

types of motion: free oscillation and forced oscillation of the chain/cable in still 

water. 

2. Analysis of the experimental data is progressed in two different ways: 

i. Direct values of the coefficients are extracted from the derived drag and 

inertia force (for the free oscillation tests). 

ii. Fourier-averaged values of the coefficients are extracted from the 

derived total normal force (for the forced oscillation tests only).  

3. Two forms of equations of motion in partial differential form are employed for 

describing the motion of the chain/cable.  Results obtained with both equations 

are compared to propose the better estimating system equation. 
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4. With the force coefficients obtained from experiments, the validation of the 

method of data analysis is implemented by comparison of motion results between 

model tests and computer simulation.  Numerical simulations are conducted 

using the commercial program “OrcaFlex”.  OrcaFlex has the capability to 

simulate the motion of a single or multiple mooring line system attached to a 

floating platform with user-input Morison drag and added mass coefficients that 

may be specified as a function of the Reynolds number. 

The appropriateness of the Morison equation is tested for certain relative fluid-body 

interaction regimes characterized by the degree of relative importance of the drag and 

inertia forces.  Since many researchers have shown that the Morison equation is not 

quite suitable for all regimes in several cases of different shaped bodies including 

circular cylinders, assessment of the equation should be performed for chain as well.  

This assessment is also needed for the validation of the force coefficients derived from 

the experiments, and will be included in the discussion of free oscillation tests.   

Finally, the damping effect of a mooring line undergoing forced oscillation is 

investigated briefly.  Since a moored offshore structure experiences both high (wave) 

and low frequency motion, tests at various different frequencies are required to 

demonstrate the frequency effect of mooring line damping.  The contribution of the 

Morison force coefficients to the damping effect provided by the mooring line to the 

floater will be also studied by conducting a numerical simulation once with the flow-

dependent coefficients obtained herein and once with representative single valued flow-

independent coefficients as applied in typical design practice.
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1.4. Outline of Dissertation 

 

Chapter II presents all of the theoretical and numerical techniques used in the 

analysis of the experimental data to estimate the hydrodynamic force and its coefficients.  

Morison’s force model, slender body dynamics and the incorporated computing process 

for force estimation are explained first.  Then the methodologies used for the estimation 

of force transfer coefficients are described.  Lastly, a novel procedure for estimation of 

bending stiffness of wire is introduced. 

Chapter III is divided into two sections.  The first section provides information 

regarding the experimental set-up of each test and the properties of the mooring lines 

tested.  In the second section, the detailed procedures for experimental data processing 

are discussed, such as optical tracking calibration, data reconstruction, data filtering, and 

error analysis. 

In Chapter IV results of the bending stiffness measurement, free oscillation tests, and 

forced oscillation tests are presented and discussed.  Also, the resistance provided by 

mooring lines to floater motions is investigated by comparison between using the 

conventional values of force coefficients and the experimentally-derived coefficients. 

Finally, concluding remarks and future work related to the present topic are given in 

Chapter V.  
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CHAPTER II 

2. THEORETICAL MODELING OF MOORING LINE DYNAMICS 

  

2.1. Introduction 

 

Both physical and numerical experiments of an oscillating mooring line in 2-

dimension have been performed to date.  Since the nature of the problems addressed in 

free oscillation and forced oscillation tests are somewhat different, the corresponding 

assumptions and analysis techniques are specified separately for each case.  Due to 

experimental difficulties, torsional motion and friction between each chain link will not 

be considered throughout the entire analysis even though their contribution to the 

hydrodynamic behavior of an oscillating mooring line is not negligible.   

To model the detailed dynamics, the mooring line is discretised into individual 

segments whose positions are known (i.e. measured) for each time step.  The 

discretised form of the equation of force equilibrium is then applied for each segment at 

each time step to estimate the total hydrodynamic force on the line.  For simplicity, it is 

assumed that Morison’s equation well represents the hydrodynamic force on the slender 

body, excluding 3-D effects such as vortex-induced vibrations (VIV).   

In general, three different components of the hydrodynamic force exist: tangential, 

normal, and bi-normal components relative to the local axis of the mooring line.  

Among these three, the normal and bi-normal force components are generally an order 

of magnitude larger than the tangential force component.  Since extracting the 

tangential force coefficients with some degree of accuracy by the experimental technique 
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presented herein does not seem possible, known representative values of tangential 

coefficients are incorporated with Morison’s equation.  Due to the unavailability of 3-D 

data (that is, only 2D experiments were performed), the bi-normal component is 

excluded in the analysis.  However as the length of the mooring line may be quite long, 

the tangential force component should be considered for better evaluation of the 

dynamic behavior of the mooring line.  

 

2.2. Morison Equation 

 

Hydrodynamic forces on a slender body can be modeled with the well known 

Morison’s equation.  The conventional form of Morison’s equation used to model the 

normal component of hydrodynamic force FN on a slender body is 

21 1
2 4N D A D A

dV
F F F C D LV V C D L

dt
ρ π ρ= + = +         (2.1) 

in which  DC  and AC  : drag and added mass coefficients, respectively 

   V : instantaneous velocity of the body relative to the fluid 

   D : characteristic dimension of the body normal to the flow 

   L : length of slender body subjected to fluid force 

          � : fluid density. 

The tangential and bi-normal force components are expressed similarly to the above 

equation and the detailed explanation will be given later.  The drag force term for the 

normal direction is mainly associated with pressure drag while the tangential drag force 

component is primarily associated with friction drag.  Force coefficients for each term 

can be obtained from the derived hydrodynamic force by means of several different 
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methods such as least square minimization, Fourier averaged analysis, and stochastic 

analysis, as reviewed in section 1.2.2. 

 

2.3. Governing Parameters 

 

Before the estimation of Morison’s force coefficients, the governing parameters that 

forces are dependent on should be determined, for instance, viscosity, flow conditions, 

and characteristics of body (dimensions, roughness, etc…).  Simple dimensional 

analysis of oscillatory slender body motion in fluids leads to the following relationship: 

( ) ( )2 / , / KC, Re
0.5

NF
f V T D V D f

D LV
ν

ρ
= =             (2.2) 

Since the relation between fluid force and other parameters not listed in Equation (2.2), 

such as roughness, upstream turbulence level, etc…, can hardly be resolved through the 

present analysis methodology, those parameters are not incorporated in the dimensional 

analysis.  To reconcile Equations (2.1) and (2.2),  
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                         (2.3) 

where   T  : period of oscillation 

    D, L  : diameter & length of body 

     ν   : kinematic viscosity 

Re  : Reynolds number 

KC  : Keulegan-Carpenter number. 

The Keulegan-Carpenter number represents the displacement ratio of flow over the 

body under oscillating flow conditions (fluid particle displacement relative to body 
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dimension) and is a most appropriate parameter for characterizing the periodic motion of 

the body in the fluid.  However, for free oscillations of a mooring line in water because 

the damping is over-critical, the KC number is effectively infinite so the fluid-body 

interaction is characterized by the Reynolds number only.   

The Reynolds number is the ratio of the inertia force to the viscous force, which is 

well correlated with the drag force under non-harmonic motion.  Both parameters have 

been widely employed by many researchers to characterize the fluid-structure interaction 

regime in presenting the correlation with drag and added mass coefficients.  The 

combination of KC and Re, the so-called frequency parameter, can also be used as a 

suitable non-dimensional parameter for purposes of correlating with the force 

coefficients.  Thus, the present research will seek to correlate Morison force 

coefficients with the parameters stated above. 

 

2.4. Equations of Motion 

 

We are interested in measuring the local hydrodynamic forces on mooring lines under 

characteristic operating conditions.  However it is not practical to directly measure the 

external force on a mooring line that is itself responding dynamically to applied forcing.  

It is therefore necessary to invoke the equation of motion for the mooring line, which 

expresses the dynamic force equilibrium at each instant of time.  The applied 

hydrodynamic force can be derived through direct measurement of all other quantities 

that contribute to the dynamic equilibrium. 
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Figure 2.1  Free body diagram of lumped mass body (where FD : drag force, FI : 

inertia force, Tn : tension at n-th node, Wo : net weight) 

 
 
 

This section describes two alternative, but equivalent, approaches for expressing the 

equation of motion, both of which are based on Frenet’s formula representing curves in 

space.  One approach is founded on a global rectangular (XYZ) coordinate system (R.P. 

Nordgren, 1974) while the alternative is based on a natural (TNB) coordinate system, 

which is the coordinate system moving with the body (A.Bliek, 1984, and C.T. Howell, 

1992).  For both methods, the mooring line is discretized into a finite number of 

segments, each of which must be in dynamic equilibrium according to the equation of 



 29 

motion.  All properties (weight, buoyancy, hydrodynamic force etc.) on each segment 

are lumped to corresponding node points along the segment (Figure 2.1).  In the 

following two subsections the essential procedure for derivation for each equation of 

motion will be summarized. 

 

2.4.1. Theory Based on Natural Coordinate System 

 

First we define the directional vector in a natural (TNB) coordinate system.  As 

illustrated in Figure 2.2, the tangential vector t
�

 is tangent to the local curve of the 

mooring line and the normal vector n
�

 is at right angle to the local curve, pointing to the 

local center of curvature of the mooring line.  The binormal vector b
�

 is then the cross 

vector product of the tangential and normal vectors.  All of the directional unit vectors 

are functions of time (t) and arc-length (s), 

TNB = [ ),( stt
�

, ),( stn
�

, ),( stb
�

] 

Assuming the mooring line is inextensible, which means the line is not subjected to axial 

strain and the length of line remains constant at all time, the vectors follow Frenet’s 

relation, 
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where k is the radius of curvature and τ  is the radius of torsion. 

The assumption of inextensibility is made in recognition of the fact that for the chain 

and wire rope mooring elements that will be tested the axial strains will be negligible.  

For mooring elements where axial strains are significant, such as polyester rope, the 

effects of axial stiffness can be incorporated straightforwardly in the equations of motion 

and do not pose any new challenges. 

 
 
 

 

Figure 2.2  Definition of natural coordinate system 
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Before building up the dynamic equation for the mooring line, one should define the 

derivatives of the vectors with respect to time and space as well.  Consider a vector 

),( stV
�

 along the line, 

1 2 3V V t V n V b= + +
�� � �                       (2.5) 

The space derivative of V
�

 in the TNB coordinate system is defined as  
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                       (2.6) 
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Similarly, the time derivative (Lagrangian derivative) in the TNB coordinate system is 
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� 	
= 
 �
� 

�

 ,  

1 2 3t n bω ω ω ω= + +� �� �
   :  rotation vector. 
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Both derivatives have a term associated with a vector cross product, one with the 

Darboux vector and the other with the rotation vector, which is different from the 

derivatives in the conventional fluid dynamics where the advective derivative term 

replaces the cross product term in the time derivative, following the Eulerian description 

of motion. 

The fundamental equation of motion for an infinitesimal length of line with the 

specified derivatives above is 

 Ap Int

V
m V ds F ds F ds

t
ω

∂
∂

� 	
+ × = +
 �

� 
� �

�
�

� � �
              (2.8) 

where   

 m   :  mass of line per unit length 

 ω�  :  rotation vector 

   ApF
�

 :  applied force per unit length 

    IntF
�

 :  internal force per unit length 

 1 2 3V V t V n V b= + +
�� � �

 :  velocity vector of a node in natural coordinates. 

Weight, hydrostatic force, and hydrodynamic force are the applied forces acting on a 

submerged line.  The net submerged weight per unit length of line is the sum of the 

weight and buoyancy forces, 

0 ( )wW m A gρ= −                         (2.9) 

where A is the cross-sectional area of the line. 

The Morison-type hydrodynamic force on a slender body is decomposed into three 

directional components,  
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Hd t n bF F t F n F b= + +
�� � �                     (2.10) 

where all three directional forces consist of both drag and added mass forces. 

After applying all the external forces, the internal forces on each line element should 

be addressed.  Along with tension, the internal forces due to material friction, torsional 

stiffness, axial stiffness, and bending stiffness should be considered.  However due to 

the relatively small effect of friction, axial strain and torsion on the hydrodynamics, only 

the tension and shear forces resulting from bending stiffness are retained, which seems 

to provide sufficient accuracy for the estimation of the hydrodynamic force coefficients.  

The internal force on a differential element can be expressed as: 

 DT T
ds T ds

D s s
∂

Ω
∂

� 	
= + ×
 �
� 

�
� �

�
                   (2.11) 

where   

t n bT T t S n S b= + +
�� � � � internal force vector

tT � nS � bS � tension and shear forces in normal and binormal directions. 

Combining equations (2.8) through (2.11) yields the general mooring line 

dynamic equation in the TNB natural coordinate system, 

( )ˆ
o t n b

V T
m V T W k F t F n F b

t s
ω

∂ ∂
Ω

∂ ∂
� �

+ × = + × − − + +� �
� �

��
� �

�� � � �     (2.12) 

where 

   k̂  :  vertical unit vector in terms of the natural vector (positive upward) 

 tF , nF , bF  :  components of hydrodynamic forces in tangential, normal, and bi-

normal directions 



 34 

To incorporate the bending stiffness of the material, moment equilibrium must be 

introduced as follows: 

[ ]m Ap

D DM dr
I dr F T

Dt Ds ds
ω = + × + ×�

� �� ��               (2.13) 

where  mI :  mass moment of inertia per unit length 

r
�

 :  position vector 

M
�

 :  internal moment vector 

The internal moment vector due to bending and torsional stiffness has three directional 

components, 

1 2 3PM G I t EI n EI bΩ Ω Ω= + +
�� � �                      (2.14) 

where   G  :  shear modulus 

         E  :  Young’s modulus 

         PI  :  polar moment 

         I   : sectional second moment. 

As rd
�

approaches zero and the rotational inertia becomes negligible equation (2.13) 

reduces to 

0
DM

t T
Ds

+ × =
�

��
                      (2.15) 

 The three directional components of the governing equations can be expressed in 

terms of Euler angles which define the position of the natural (TNB) coordinate system 

relative to the global Cartesian (XYZ) coordinate system.  To determine the 

transformation matrix, initially the mooring line element is considered to be aligned with 

the horizontal X axis, and then it starts to experience the angular and translational 

motion.  According to the assumption of no torsional motion of the line, only two Euler 
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angle rotations are defined for the coordinate transformation.  The rotation sequence is 

defined in Figure 2.3. 

 
 
 

 

Figure 2.3  Cartesian (XYZ) to natural (TNB) coordinate transformation 

 
 
 

There are many different orders of rotation that one can apply if rotations around all 
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three axes are involved.  Determining the sequence of rotation is a very important issue 

because it can affect the entire dynamic solution of the mooring line, including the 

calculated hydrodynamic forces.  The rotation sequence used in the present work 

showed better efficiency for the estimation of force coefficients than the reversed 

sequence when a 3-D problem is addressed.  This is because the tension plays a key 

role in the estimation of fluid force through solid dynamics, and the tension is not 

coupled with the equilibrium equation for the binormal direction when the reversed 

sequence is chosen.  Consequently, both the tension and the hydrodynamic force can be 

distorted in the dynamic calculation.  The efficiency of these two rotation sequences 

can be measured by comparing the backwardly estimated coefficients from the motion 

data simulated with the pre-defined coefficients. 

The coordinate transformation from global to natural coordinates can be accomplished 

by applying the following matrix transformation: 

cos cos sin cos sin

sin cos 0
cos sin sin sin cos

T X

N Y

B Z

φ θ φ θ θ
φ φ

φ θ φ θ θ

−� 	 � 	� 	

 � 
 �
 �= −

 � 
 �
 �

 � 
 �
 ��  � � 

            (2.16) 

The rotation vector, the vertical unit vector, and the Darboux vector in Euler angles are 
given as 

( ) ( ) ( )sin cost n bω φ θ θ φ θ= − + +� � � �
�� �                (2.17) 

( ) ( ) ( )sin cos cos sin sink t n bφ θ φ φ θ= + +
� �� �            (2.18) 

sin cost n b
s s s
φ θ φθ θ∂ ∂ ∂

Ω
∂ ∂ ∂

� � � � � �
= − + +� � � � � �
� � � � � �

� �� �            (2.19) 

Using equation (2.17) through equation (2.19), the equations of motion for each 
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directional component in natural coordinates are written as 

0cos cos sin cost
b n t

u T
m w v S S F W

t s s s
θ φθ φ θ θ φ θ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
� 	

+ − = + − + −
 �
� 

� �  

0cos cos cos sin cosn
t b n

v S
m w u T S F W

t s s s
φ φφ θ φ θ θ θ φ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
� 	

+ + = + + + −
 �
� 

� �  

0sin sin sin sinb
n t b

w S
m u v S T F W

t s s s
φ θθ φ θ θ φ θ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
� 	

− − = − − + −
 �
� 

� �     (2.20) 

2

2

cos
cos sinnS EI

s s s s s
φ φ θ θ φθ θ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
� 	

= − + −
 �
� 

 

22

2 cos sinbS EI
s s
θ φ θ θ∂ ∂

∂ ∂

� 	� �
= +
 �� �


 �� �� 
 

where wvu ,,  are the velocity components in tangential, normal, and binormal 

directions, respectively.  For a two dimensional problem constrained to the plane of the 

mooring line, the equations of motion are simplified as below. 

0 sint
n t

Tu
m v S F W

t s s
φ

φ φ
∂∂ ∂

∂ ∂ ∂
� 	

− = − + −
 �
� 

�

0 cosn
t n

Sv
m u T F W

t s s
φ

φ φ
∂∂ ∂

∂ ∂ ∂
� 	

+ = + + −
 �
� 

�             (2.21) 

2

2nS EI
s
φ∂

∂
� 	

= − 
 �
� 
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2.4.2. Theory Based on Global Coordinate System 

 

The motion of a mooring line element is expressed in terms of the position of the 

central axis of the line in a space curve defined by the position vector ),( tsr
�

, which is a 

function of the arc length along the curve and time. On the curve, the unit tangent vector 

t
�

, the unit normal vector n
�

, and the unit binormal vector b
�

 are defined by 

 t r′=
� � ,  /n t k′=

�� ,  b t n= ×
� � �                  (2.22) 

where the prime denotes differentiation with respect to arc length and k denotes the local 

radius of curvature. 

The internal state of stress at a point on the line element is described by the resultant 

force F
�

.  The dynamic force balance is given by: 

F Q m r+ =
�� ���                         (2.23) 

where  Q
�

  :  applied force per unit length 

     m  :  mass per unit length. 

The resultant force F
�

 has contributions from bending stiffness and tangential force on 

the mooring line, 

( )F EI r rλ′′ ′ ′= − +
� � �                      (2.24) 

where EI is the bending stiffness of the material and λ  is a Lagrangian multiplier  

resulting from the assumption of inextensibility of the mooring line.  Applying Frenet’s 

formula yields 

2 2F r EI k T EI kλ ′= ⋅ − = −
� �                  (2.25) 
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where T is the tension in the line and k  is the line curvature, which is defined as the 

absolute value of the second spatial derivative of the position vector ),( tsr
�

. 

All of the remaining forces, including weight, buoyancy force, and hydrodynamic 

force, can be considered as the applied force, 

0
ˆ ( )Hd t n bQ W B F W k F F F= + + = + + +

� � � � � � �
           (2.26) 

The hydrodynamic force consists of the inertia and drag forces in all three directions of 

the TNB coordinate system.  One could also include the hydrodynamic lift force, which 

can cause vortex-induced vibrations (VIV), however this will not be considered here for 

the sake of simplicity. 

Substituting equations (2.24)-(2.26) into (2.23) and neglecting torsion and the 

bending stiffness, the general equations of motion for a mooring line element in the 

global coordinate system can be written as 

( )
2 2

2 2

24 2 2

4 2 2

ˆ
o t n b

r r T r r
m T W k F F F

t t s s s

r r r r
EI

s s s s

ω∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

� �+ × = + − − + +� �
� �

� 	� �
− + +
 �� �


 �� �� 

�
�� � � �� � � �

� � � �
    (2.27) 

where   

 m  :  mass of line per unit length 

  ω�  :  rotation vector 

 T
�

 :  tension vector 

 oW  :  submerged weight of line per unit length 

 r
�

(s, t)  :  space curve 
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 tF , nF , bF   :  tangential, normal, and bi-normal components of hydrodynamic 

forces. 

Note that the time derivative of the acceleration term is replaced by the Lagrangian 

derivative in order to include the effect of rotational motion of the mooring line.  The 

rotation vector used here involves two axes only, the Y and Z axes, since torsional 

motion has been neglected, that is, 

ˆî kω θ φ= ⋅ + ⋅� � �                        (2.28) 

The rotation sequence for coordinate transformation is given in the previous section 

(see Figure 2.3).  The hydrodynamic forces in natural coordinates should be 

transformed into the global coordinate system by using the following transformation 

matrix: 

 
cos cos sin cos sin

sin cos cos sin sin
sin 0 cos

X T

Y N

Z B

φ θ φ φ θ
φ θ φ φ θ

θ θ

−� 	 � 	� 	

 � 
 �
 �=

 � 
 �
 �

−
 � 
 �
 ��  � � 

          (2.29) 

which is the inverse of the transformation matrix in equation (2.16). 

Rewriting the equations for each directional component in the global coordinate 

system yields 

2

2

24 2 2

4 2 2

cos cos sin cos sint n b

T x x
m x z y T F F F

s s s

x r x x
EI

s s s s

θ φ φ θ φ φ θ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ − = + − + −� 	� 

� 	� �− + +
 �� �

 �� �� 

� ��� ��

�
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2

2

24 2 2

0 4 2 2

sin cos cos sin sint n b

T y y
m y x T F F F

s s s

y r y y
W EI

s s s s

φ φ θ φ φ θ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ = + − − −� 	� 

� 	� �− − + +
 �� �

 �� �� 

��� �

�
   (2.30)����

 
2

2

24 2 2

4 2 2

sin cost b

T z z
m z x T F F

s s s

z r z z
EI

s s s s

θ θ θ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

− = + + −� 	� 

� 	� �− + +
 �� �

 �� �� 

����

�
 

where   

  
2 2 2 22 2 2 2

2 2 2 2

r x y z
s s s s

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

� � � � � �= + +� � � � � �
� � � � � �

�

�

In the case of two dimensional motions constrained in the plan of the line, the equations 

of motion are reduced to 

2

2

24 2 2

4 2 2

cos sint n

T x x
m x y T F F

s s s

x r x x
EI

s s s s

φ φ φ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

− = + − +� 	� 

� 	� �
− + +
 �� �


 �� �� 

��� �

�  

(2.31) 
2

2

24 2 2

0 4 2 2

sin cost n

T y y
m y x T F F

s s s

y r y y
W EI

s s s s

φ φ φ∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ = + − −� 	� 

� 	� �
− − + +
 �� �


 �� �� 

��� �

�
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2.5. Computational Approach 

 

The equations of motion in both coordinate systems are quite similar to each other 

and have the same number of variables including velocity, acceleration, tension, angle, 

etc.  Excluding all the variables associated with kinematics, which can be obtained 

from the measured position vector by using the finite difference method (forward, 

central or backward difference), only the top tension and each component of the 

hydrodynamic force are left as unknown variables.  As previously mentioned, the 

tangential force may be neglected.  Alternatively, we may combine the normal and 

binormal forces into one component to reduce the number of unknown variables if a 

three-dimensional problem is considered.  The equations in both coordinate systems 

then become a complete, closed system with known top (or bottom) tension which is 

also provided by direct measurements.  The equations can be solved explicitly or 

implicitly by adjusting the starting node point for the computation.  For example, 

when considering the case of forced or free oscillations, for an implicit scheme the 

computation may start with the second node from the top or bottom end, while for an 

explicit scheme the computation may start with the first end node.  Hereafter, the 

overall process of dynamic calculation is presented in the order of computation. 

 

2.5.1. Kinematics 

 

Moving chain or cable elements generally undergo translational and angular motion, 

thus kinematics for both types of motion are required for dynamic analysis and can be 
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calculated by means of the 3-point central difference method applied to position 

measurements.  To increase accuracy, a 5-point differencing scheme can be applied.  

For the initial and last frames, forward and backward difference schemes are employed.  

Since the kinematics are measured in a global coordinate frame of reference, kinematics 

related to the translational motion should be transformed into the natural coordinate 

system through the coordinate transformation matrix previously provided. 

 

Angular velocity and acceleration 

1 1
,

2

q q
i q i i

h
θ θθ

+ −−=�  

(2.32) 
1 1

,
2

2q q q
i q i i i

h
θ θ θθ

+ −− +=��  

 

Translational velocity and acceleration 

1 1
,

2

q q
i q i iX X

X
h

+ −−=�  

(2.33) 
1 1

,
2

2q q q
i q i i iX X X

X
h

+ −− +=��  

where  q  :  the time step index 

        h  :  the time interval between successive measured positions 

        i  :  the node point index. 

Alternatively, the 5-point central difference scheme is 

2 1 1 2
, 8 8

12

q q q q
i q i i i iX X X X

X
h

+ + − −− + − +=�  
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(2.34) 

2 1 1 2
,

2

16 30 16
12

q q q q q
i q i i i i iX X X X X

X
h

+ + − −− + − + −=��  

 

2.5.2. Hydrodynamic Forces 

 

As previously mentioned, Morison’s formula is assumed to represent the 

hydrodynamic force on slender body elements.  The hydrodynamic force is comprised 

of the drag and inertia force components.  Each force has three directional (tangential, 

normal and binormal) components, each with its own force coefficients in the natural 

coordinate system. 

 

Drag force: tangential, normal, and binormal components 

, , , ,1
2

i q i q i q i q
Dt Dt t tF D L C V Vρ π= ⋅ ⋅ ⋅ ⋅ ⋅  

, , , ,1
2

i q i q i q i q
Dn Dn n nF D L C V Vρ= ⋅ ⋅ ⋅ ⋅                  (2.35) 

, , , ,1
2

i q i q i q i q
Db Db b bF D L C V Vρ= ⋅ ⋅ ⋅ ⋅  

where subscripts t, n, b denote the tangential, normal, and binormal directions, 

respectively.  Since the dynamics of the mooring line are computed with a finite 

number of discretized segments, the nonlinear velocity-squared terms in the formulas for 

the normal and binormal components should be replaced with averaged values over the 

length of each element to include the effect of angular motion.  The averaged normal 

velocity-squared term for the two different cases of segment motion can be calculated 
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through integration over the length of each segment. 

 

For 
2 nV
φ ≤
�

 

/ 2 ,
, , , 2 , 2 , 2 , 3

,
/ 2

1 ( ) 1
( ) ( ) ( )

12

L i q
i q i q i q i q i q i qn

n n n ni q
L

sign V
V V V r dr V L L

L L
φ φ

−

� 	= + = +
 �� 
� � �     (2.36) 

 

For 
2 nV
φ >
�

 

/ 2 , , 3
, , , 2 , , 2

,
/ 2

1 ( ) 2 ( ) 1
( ) ( )

3 2

L i q i q
i q i q i q i q i qn n

n n n ni q
L

sign V V
V V V r dr V L

L L
φ φ

φ−

� 	
= + = +
 �

� 
� � �

�
   (2.37) 

Similarly, the velocity-squared term for the binormal component can be obtained using 

θ  (angle around normal axis) instead of φ . 

The formulas listed above are based on an in-line flow approach.  An alternative 

approach is to apply the cross-flow assumption using vector calculation.  In this 

approach, the tangential component remains the same while the normal and binormal 

components are changed as follows. 

2 2 2 2

ˆˆ( )

ˆˆ

cr cr n b n b

n n b b n b

V V V n V b V V

V V V n V V V b

⋅ = + ⋅ +

= + + +
            (2.38) 

thus 

     2 2
n n n n bV V V V V≈ +    and  2 2

b b b n bV V V V V≈ +          (2.39) 

 

Added mass: normal and binormal components 
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, 2 , ,1
4

i q i q i q
An mn nF D L C Vρ π= ⋅ ⋅ ⋅ ⋅ ⋅ �                    (2.40) 

, 2 , ,1
4

i q i q i q
Ab mb bF D L C Vρ π= ⋅ ⋅ ⋅ ⋅ ⋅ �                    (2.41) 

Because of the linear relationship between inertia force and acceleration, angular 

motion does not contribute to the averaged value of acceleration over each segment. 

 

2.5.3. System Equations in Two Dimensions 

 

A finite difference method is applied for the numerical solution of the derived partial 

differential equations of motion.  Although there a number of different schemes one 

could choose, only representative system equations in 2-dimensions are given here.  

Both 3-point symmetric (central) and asymmetric (forward and backward) schemes for 

spatial derivatives are used for the computation and all schemes are compatible with 

variable grid size. 

System equations including bending stiffness term in natural coordinates 

For the first end node (forward difference), 

( )1 1, 1, 1, 1, 1 1,

2 2 2, 2 3, 1, 2
1 1 2 2 1 1 2 2

1 2 1 2

2 2, 3, 2, 1, 2 2, 1,
1, 1 1 2 2

1 2 1 2

sin

( 2 ) (2 )
( )

( ) 2 ( ) ( )
( )

q q q q q
t n t o

q q q

q q q q q q
q

n

m V V F W

s s s s T s T T s s s
s s s s

s s s s
S

s s s s

φ φ

φ φ φ φ φ φ

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

− = −

+ + − − ++
+

− + − + −+
+

��
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( )1 1, 1, 1, 1, 1 1,

2 2, 3, 2, 1, 2 2, 1,
1, 1 1 2 2

1 2 1 2

2 2, 3, 2, 1, 2 2, 1,
1 1 2 2

1 2 1 2

cos

( ) 2 ( ) ( )
( )

( ) 2 ( ) ( )
( )

q q q q q
n t n o

q q q q q q
q

q q q q q q
n n n n n n

m V V F W

s s s s
T

s s s s

s S S s s S S s S S
s s s s

φ φ

φ φ φ φ φ φ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

+ = −

− + − + −+
+

− + − + −+
+

��

 

 

3, 2, 2, 1,
1, 1 2

1 2 1 2

2[ ( ) ( )]
( )

q q q q
q

n

s s
S EI

s s s s
φ φ φ φ∆ ∆

∆ ∆ ∆ ∆
− − −= −

+
            (2.42) 

For an ith internal node (central difference), 

( ), , , , ,

2 2 , 2 1, 1, 2
1 1

1 1

2 1, , 2 , 1,
, 1

1 1

sin

( )
( )

( ) ( )
( )

i i q i q i q i q i i q
t n t o

i q i q i q
i i i i

i i i i

i q i q i q i q
i q i i
n

i i i i

m V V F W

s s T s T T s
s s s s

s s
S

s s s s

φ φ

φ φ φ φ

+ −
− −

− −

+ −
−

− −

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

∆ ∆
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− = −

− + −+
+

− + −−
+

��

 

 

( ), , , , ,

2 1, , 2 , 1,
, 1

1 1

2 1 2 1
1

1 1
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( ) ( )
( )

( ) ( )
( )

i i q i q i q i q i i q
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i q i q i q i q
i q i i

i i i i

i i i i
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i i i i

m V V F W

s s
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s s s s

s S S s S S
s s s s

φ φ
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− −

+ −
−

− −

∆ ∆
∆ ∆ ∆ ∆

∆ ∆
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1, , , 1,

, 1

1 1

2[ ( ) ( )]
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i q i q i q i q
i q i i
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i i i i

s s
S EI

s s s s
φ φ φ φ+ −

−

− −

∆ ∆
∆ ∆ ∆ ∆

− − −= −
+

          (2.43) 
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where is∆  is the length of the ith segment and superscripts i and q denote ith node and 

qth time step, respectively. 

For the last end node, finite difference equations can be obtained in the same manner 

as for the first node by replacing the spatial derivative term with a backward difference 

scheme. 

System equations in global coordinates 

Unlike the previous equations, bending stiffness is not included here because the 

terms with bending stiffness in the original equations involve fourth-order spatial 

derivatives of position vectors and so a fine grid size is required to obtain a sufficient 

degree of accuracy.  Thus the system equations expressed in global coordinates below 

are only applicable to mooring line components whose bending stiffness is negligible, 

such as chain and thin wire. 

For the first end node,  

1 1, 1, 1, 1, 1, 1, 1,

1,1, 1, 2
1,

2

cos sinq q q q q q q
t n

qq q
q

m x y F F

dT dx d x
T

ds ds ds

φ φ φ� 	− = −� 

� 	� 	 � 	+ + 
 �
 � 
 ��  �  � 

��� �
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Similarly, the equations for the last node can be derived with a backward difference 

scheme. 

Based on the above equations, applying the boundary condition of known (i.e. 

measured) top (or bottom) tension and the known values of tangential hydrodynamic 

force coefficients yields a couple of closed systems with two unknown variables of 

tension and normal hydrodynamic force for each node point. 
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2.6. Estimation of Force Transfer Coefficients 

 

Generally, for purposes of design, one is interested in modeling the time-dependent 

forces on floating systems exposed to realistic ocean environments.  In the context of 

modeling the hydrodynamic forces on mooring systems using Morison’s equation, this 

would require knowledge of flow-dependent and time-dependent force coefficients.  

Due to the complexities of the fluid-structure interaction experienced by mooring lines 

in real environments, it is not possible to catalog instantaneous (time-dependent) values 

of the Morison force coefficients for all the relevant flow conditions.  However, time- 

or frequency (or harmonic)-averaged values of the hydrodynamic coefficients can be 

regarded as practical alternatives to instantaneous values to appropriately represent the 

characteristics of slender body hydrodynamics.  The dependence of the time- or 

frequency-averaged coefficients on the flow conditions (as characterized by the Re and 

KC numbers) may still be retained, and is in part the subject of this dissertation. 

Given the measured or indirectly derived total hydrodynamic force and line kinematics 

from experiments, the force transfer coefficients can be estimated in several ways.  

Either the least square minimization method or the Fourier analysis method may be 

applied to obtain both drag and added mass coefficients.  Note that neither method is 

applicable to the over-damped free oscillation case since no harmonic motion exists.  

For this reason, the force transfer coefficients from free oscillation tests are obtained by 

direct calculation of the dynamic equation, as will be explained later in detail. 
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2.6.1. Fourier Analysis 

 

Since the motion of a mooring line is composed of multiple harmonic modes, the 

motion-induced hydrodynamic force must have different transfer coefficients for each 

harmonic.  Using the Fourier transform, the time series of the total in-line force and its 

drag and added mass force components can be further decomposed into various 

frequency-dependent components.  Splitting the Fourier-transformed data into real and 

imaginary parts yields, for each harmonic, two equations with two unknowns, DC  and 

AC .  The conventional Morison equation and its Fourier series representation are 

21 1
2 4N D A D AF F F DC V V D C Aρ π ρ= + = − −             (2.46) 
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where  f
NF  : in-line force for each harmonic 

 f
NSV   : velocity squared term with sign for each harmonic 
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 f
NA   : acceleration term for each harmonic 

 ω   : angular frequency. 

The averaged force coefficients for each harmonic can be readily obtained by 

multiplying both sides of equation (2.47) with cos( )k tω  for the real part and sin( )k tω  

for the imaginary part, respectively, and integrating over the cycle of each frequency. 

 

2.6.2. Least Square Minimization 

 

The estimation of the averaged force coefficients for the total time history is achieved 

by minimizing the least square difference ( 2E ), defined as follows: 

22 [ ]M FFE S S= −�                         (2.48) 

where MS  is the amplitude spectrum of the calculated force by solving the chain-cable 

dynamic equations and FFS  is the amplitude spectrum of force expressed by Morison’s 

equation, that is, 

( )( )
21 1

2 4FF D A AAV V V V
S DC S D C Sρ π ρ= +              (2.49) 

Differentiating 2E  with respect to DC  and AC , respectively, and setting the two 

resulting equations equal to zero yields the time-averaged force coefficients for each 

mooring line segment, 
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(2.50) 
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 Alternatively, the power spectrum of the in-line force can be used to obtain the time-

averaged value of the coefficients by applying the Fourier transform to the expression 

for the covariance of the in-line force.  As mentioned in section 1.2.2.2, Borgman 

(1965) derived the power spectrum of wave force on bodies for a Gaussian wave process, 

in which some assumptions on the variables (force, velocity, acceleration) were made.  

In the present study, however, one might employ the following form of covariance of 

Morison’s type force simplified by the assumption of zero-mean acceleration: 

2 2
1 2( )( )FF V V V V VVR C R C R= + � �                     (2.51) 

Using the Wiener-Khintchine relationship,  

1
( )

2
i

FF FFS R e dωττ τ
π

∞ −

−∞
= �                     (2.52) 

and substituting Eq. (2.51), Eq. (2.52) becomes 

2 2
1 2( )( ){ }FF FF V V V V VVR S C S C S= = +� � �             (2.53) 

where  1

1
2 DC D Cρ=  

       2
2

1
4 AC D Cπ ρ=  

       {}�   :  denotes the Fourier transform. 

Likewise, applying the least square minimization to equation (2.53) can yield time-

averaged hydrodynamic coefficients.  Since the values of the coefficients estimated 

through this equation, especially the added mass coefficient, were observed to be much 

larger than those from the amplitude spectrum which indicates the results might be 
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distorted by the assumption associated with the acceleration, only the amplitude 

spectrum, equation (2.49), will be employed for the estimation of time-averaged 

coefficients in this study. 

 

2.7. Velocity and Time Scales 

 

The Reynolds number (Re) and Keulegan-Carpenter number (KC) may be specified in 

terms of characteristic velocity and time scales.  When correlating frequency- or time-

averaged force coefficients with Re and KC, it is important to use consistent velocity and 

time scales.  For frequency-averaged coefficients, the velocity amplitude and the period 

(reciprocal of frequency) for each harmonic can be employed.  The time-averaged 

coefficients can be well correlated with the root mean square (RMS) velocity and the 

average zero-upcrossing period, which is the average time interval between successive 

upcrossings of the mean position.  For a zero-mean Gaussian velocity process, the zero-

upcrossing period may be calculated as: 

0

2

2 2 V
Z

V

m
T

m
σπ π
σ

= =
�

                     (2.54) 

where  Vσ   :  standard deviation of velocity 

       Vσ �   :  standard deviation of acceleration 

       
0

( )n
nm S dω ω ω

∞
= �   :  spectral moments. 

Alternatively, if the velocity process can be further assumed to be narrow banded, one 

might use the characteristic RMS velocity defined as 2 Vσ⋅ . 
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2.8. Bending Stiffness 

 

The effect of bending stiffness due to curvature of a cable or wire rope segment should 

be considered when designing a mooring system.  In deep water the effect of bending 

stiffness is generally neglected, but in shallow water and laboratory situations, where the 

radius of curvature may not be that small, the effect of bending stiffness in generating 

internal shear forces and moments may be significant.  The shear force is oriented with 

the normal hydrodynamic force whose magnitude is an important factor in design 

because of its role in generating system damping for the floating structure.  Therefore, 

without considering the effect of bending, the evaluation of damping from the mooring 

system may not be accurate. 

The bending stiffness of wire rope used in the laboratory experiments described in 

Chapter III is not available from the manufacturer and instruments for direct 

measurement of bending stiffness are not available to us.  Consequently the following 

method was devised to measure the bending stiffness of the wire rope segments used in 

the experiments.  Each wire segment was hung as shown in Figure 2.4 with both ends 

fixed.  A tri-axial load cell was placed at one end to measure the tension and shear force.  

The position of each optical target placed on the wire was measured through optical 

tracking. 
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Figure 2.4  Experimental configuration of wire for measurement of bending 

stiffness 

 
 
 

With these data, solving the static equilibrium yields the shear force at each 

discretized node point (optical target location).  The static equilibrium equation in 2-D 

can be derived from Eq. (2.20) by setting the inertia and hydrodynamic forces equal to 

zero: 
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2

2nS EI
s
φ∂

∂
= −                            (2.56) 

From Eq. (2.54), the bending stiffness (EI) can be obtained for each segment.  If a 

variation of values over all sections is observed, an average or median value may be 
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taken as representative if the single wire is known to have uniform material properties. 

Eq. (2.56) is exactly the same as the shear-curvature relation in fundamental beam-

deflection theory, which is founded on the assumption that the deflection angle (φ ) is 

small enough for the approximations tanφ φ≅  and cos 1φ ≅  to be valid �   However, 

since wire rope is more flexible and in most applications experiences larger curvature 

than beams do, the alternative relation between shear force and curvature without the 

small angle assumption may be required to achieve sufficient accuracy. 

 
 
 

 

Figure 2.5  Deflection curve 

 
 
 

The new equation is derived from the classic relation 
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where  y  :  vertical deflection 

     x  :  horizontal coordinate. 

The third order spatial derivative of deflection can be obtained by differentiating the 

slope of the deflection curve twice with respect to x  and using following relations (refer 

to Figure 2.5
�	�
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dx
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φ=     and    
2

2 2

1
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The final equation for the shear force is expressed as:  
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         (2.59) 

Results from both equations (2.56) and (2.59) will be compared and tested for how 

they affect the inferred hydrodynamic force coefficients (see section 4.2). 
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CHAPTER III 

3. EXPERIMENTAL DESIGN AND DATA PROCESSING 

 

3.1. Experimental Design 

The availability of optical tracking techniques using high-speed video provides an 

opportunity for exploring the feasibility of deducing Morison drag and inertia 

coefficients from measured trajectories of chain and cable elements undergoing 

controlled free or forced oscillations in calm water.  A Similar type of 3-D motion 

tracking of oscillating chain in air was conducted by C.T. Howell (1992) for the 

verification of analytical and numerical models of resonant response.  Since there is no 

available technique for direct measurement of the hydrodynamic force on an oscillating 

slender body such as chain and wire rope, an alternative, indirect method is proposed 

where the fluid force is obtained from the solution of the slender body dynamic 

equations of motion using the measured line displacement and end-force.  In principle a 

free oscillation test may be used to estimate instantaneous values of the drag coefficient, 

whereas a forced oscillation test may be analyzed to derive Fourier- and time-averaged 

values of both the drag and added mass coefficients. 

Small scale oscillation experiments were performed to simply test the approach and 

work out the majority of problems which can potentially occur in a large scale test.  

Given success with the small scale experiments, both free and forced oscillation tests at 

large scale were conducted in the OTRC wave basin with the benefit of the knowledge 

and confidence gained in the foregoing experiences. 
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3.1.1. Small Scale Experiments (Free Oscillation Tests) 

The objective of this part is to set-up an experiment to measure the motion of chain 

undergoing free oscillation in calm water.  Experiments took place in a small 2-D wave 

flume whose sides are made of glass, which enables direct measurement of line 

kinematics by optical tracking (Figure 3.1).  The interior width of the flume is 0.914 m 

and the maximum water depth is 1.21 m. 

Three different sizes of twisted link chains were tested in order to investigate a wide 

range of Re and KC number.  Chains of about 0.7 m length were tested.  Detailed 

characteristics of each chain are given in Table 3.1.  The equivalent diameter, eqD , is 

calculated using the measured submerged unit weight of the chain, subW  according to 

4( ) /( )eq subD W W Lπ ρ= −                   (3.1) 

where W  and L  are the unit weight and length of the chain, and ρ  is the water 

density. 

 
 
 

Table 3.1  Characteristics of small scale chains tested 

Chain Characteristic Big Chain Medium Chain Small Chain 
Weight per Unit Length [kg/m] 0.1257 0.0766 0.0454 

Submerged Unit Weight [kg/m] 0.1073 0.0632 0.0364 

Equivalent Diameter [m] 0.0048 0.0041 0.0034 

Length [m] 0.703 0.706 0.690 
Marker Spacing [m] 0.0566 0.049 0.0518 
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  The top of the chain was pinned just below the water level and thereby confined to 

rotational motion. Initially the other end of the chain was held in a pliers-type release 

device.  The pliers are opened electronically through a controller.  Upon release of the 

bottom of the chain, the motion of the chain is tracked by the camera until the chain 

comes to rest in the vertical position (Figure 3.2).  An example trajectory from a free 

oscillation test is given in Figure 3.3. 

 
 
 

 
Figure 3.1  Experimental set-up of small scale test 
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Figure 3.2  Small scale free oscillation test 

 



 63 

 

Figure 3.3  Sample trajectory from a free oscillation test 

 
 
 

  For optical tracking of the chain, a digital high-speed video camera (early version 

Phantom V-series camera, manufactured by Vision Research Inc.) which can record up to 

1000 frames per second was employed.  The camera produces black & white images at 

a resolution of 512 pixels by 512 pixels.  Markers consisting of little strips of white 

tape were placed with uniform spacing on the test chains.  In order to easily analyze the 

video, one has to maximize the contrast between the markers and the background, so all 

possible areas appearing bright should appropriately be blocked out.  A pair of high 

intensity lights was placed in front of the flume window to illuminate the markers on the 

chain. 
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3.1.2. Large Scale Experiments 

 

Large scale experiments were conducted in the OTRC 3D wave basin.  The wave 

basin was designed for hydrodynamic model testing of moored, deepwater offshore 

structures.  The basin is 150 ft long, 100 ft wide and 19 ft deep.  Observation windows 

are located on each side of the basin and beneath the wavemaker, which enables optical 

tracking of submerged bodies (Figure 3.4).  The large scale experiments were designed 

to utilize the full depth of the basin.  Accordingly, the field of view (FOV) was set at 5 

m x 5 m, much larger than the 0.78 m x 0.78 m FOV used in the small scale tests in the 

wave flume. 

In order to minimize the resolution error from optical tracking, a CCD camera 

(Phantom v5.1 camera, manufactured by Vision Research Inc.) with a resolution of 1024 

pixels by 1024 pixels and a frame rate of up to 1000 Hz was employed, offering twice 

the accuracy relative to the small scale experiments.  Since high speed cameras have 

very poor light sensitivity compared with regular digital cameras, pictures must be taken 

with intense lighting.  Accordingly, six underwater lights with unit brightness of over 

9000 lumens were placed around the tracking object close enough to create the best 

illumination without creating excessive glare (Figure 3.5). 
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Figure 3.4  Optical tracking camera installed on the side window of OTRC basin 

 

Figure 3.5  Underwater lighting set-up 
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Figure 3.6  Power supply and MTS controller for hydraulic ram 

 

Figure 3.7  Hydraulic ram installed on the bridge for the forced oscillation test 
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Figure 3.8  Diagram of large scale test setup 

 
 
 

  In addition to optical tracking measurements, the top tension in the mooring line 

was measured using a tri-axial load cell composed of three stacked single-axis load cells 

oriented to measure the three directional X, Y, and Z force components.  Loads cells of 

two different capacities are combined for cases where one of the directional force 

components is much smaller than the others in order to increase the accuracy of the data.  

A hydraulic ram actuated by an MTS Systems Corp. series 458 analog servo-controller 

with MLDT (magnetostrictive linear displacement transducer) position feedback is used 
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to sinusoidally oscillate the top of the line at single or multiple frequencies (Figure 3.6 

and Figure 3.7).  Synchronization of all of the measurement channels is simply done by 

transmitting a signal to each device identified above, so that all devices can be 

automatically triggered at the same time.  The set-up in the OTRC wave tank is roughly 

displayed in Figure 3.8. 

By performing both free and forced oscillation tests of flexible cable and chain 

segments, one can derive detailed insight into the behavior of the fluid-structure 

interaction, which may demonstrate the existence of different hydrodynamic 

characteristics for different ranges of KC and Re.  To obtain a broad range of Re and 

KC, three different sizes of chain and cable were tested for various forced harmonic 

motions which may be either single frequency oscillations or combined low+high 

frequency oscillations.  For the combined frequency motion, a typical wave frequency 

was superposed upon a frequency characteristic of slow drift surge motion in a typical 

1:50 model scale situation.  Table 3.2 summarizes the frequencies tested, corresponding 

to periods of 1.5, 3, 5, 10 and 15 seconds. 

 
 

Table 3.2  Frequencies of forced oscillations 

 Low Frequency Low-High Combined Frequency 

Frequency [rad/s] 2�/5 2�/10 2�/15 2�/15 + 2�/1.5 2�/15 + 2�/3 

Amplitude[m] 0.22 0.35 0.35 0.315 + 0.039 0.28 + 0.07 
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Figure 3.9  Chains and wires used in large scale test 

 
 
 

Additionally, experiments with a combination mooring of chain-wire-chain were 

implemented to acquire data from a more realistic mooring line configuration used for 

offshore structures.  The length ratio of the chain-wire-chain combination was 

approximately 15%-70%-15% of the total line length. 

Free oscillation tests of wire rope turned out to be impractical because of the 

significant influence of bending stiffness of the cable for the line lengths that could be 

tested.  The motion of free falling wire in fluids is substantially affected by material 

characteristics such as bending stiffness, torsional stiffness, etc.   

The properties of all mooring lines tested in the large scale experiments are listed in 
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Table 3.3 and illustrated in Figure 3.9. 

 
 
 

Table 3.3  Characteristics of all mooring lines tested 

Material Characteristics Big Medium Small 

Free oscillation 4.611594 4.757369 4.601306 

Suspended 6.047808 6.152369 6.049306 Length [m] 
 Semi-taut 7.06707 6.956369 6.975306 

Marker Spacing [m] 0.25 0.197 0.24 

Unit Weight [kg/m] 2.306755 0.46576 0.189812 

Submerged Unit Weight [kg/m] 2.007127 0.402685 0.163092 

Chain 

Equivalent Diameter [m] 0.019542 0.008966 0.005836 

Length [m] Semi-taut 7.0075 7.004 6.99875 

Marker Spacing [m] 0.20 0.20 0.20 

Unit Weight [kg/m] 0.342205 0.239006 0.086301 

Submerged Unit Weight [kg/m] 0.276535 0.192842 0.06831 

Wire 

Equivalent Diameter [m] 0.009149 0.007671 0.004789 

Total Length [m] 7.047594 7.059369 7.013306 

Cable Length [m] 5.005 5.007 5.004 

Chain Length for Each End [m] 0.986297 1.004184 0.981153 

Marker Spacing in chain[m] 0.24 0.197 0.24 

Marker Spacing in wire[m] 0.20 0.20 0.20 

Equiv. Diameter of Cable [m] 0.009149 0.007671 0.004789 

Chain -  
Wire -  
Chain 

Equiv. Diameter of Chain [m] 0.019542 0.008966 0.005836 

 



 71 

Two distinctive configurations of mooring line systems were employed for the forced 

oscillation tests.  A semi-taut catenary configuration was tested to investigate the 

damping contribution of the sag bend section.  A suspended catenary configuration was 

tested to investigate what effect on the hydrodynamic behavior of a mooring line can be 

produced by interaction with the (assumed rigid) seafloor.  Therefore the semi-taut 

catenary mooring line was designed to have its bottom part contacting the floor of the 

basin while the suspended catenary mooring was designed to be free of such interaction 

(Figure 3.10 and Figure 3.11).  Laboratory configurations and sample trajectories of 

both moorings are shown in Figure 3.12 and Figure 3.13, respectively. 

Table 3.4 lists the lowest natural frequency of vibration for each mooring 

configuration, as calculated using OrcaFlex, and shows that the modal natural periods 

for all tests were less than 3.15 seconds.  With reference to the forcing frequencies 

provided in Table 3.2, it appears that only in the combined low+high frequency tests 

where the period of the high frequency oscillations was 1.5 sec is there a possibility for 

direct excitation of resonant modes in the line.  Although direct (linear) excitation of 

resonant line motions was generally avoided, there is a possibility that resonant 

vibrations were excited by nonlinear forcing mechanisms associated with the fluid-

structure interaction. 
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Figure 3.10  Semi-taut catenary mooring mount 

 

Figure 3.11  Suspended catenary mooring mount 
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      <Semi-taut catenary mooring>           <Suspended catenary mooring> 

Figure 3.12  Line configurations for forced oscillation tests 

 

Table 3.4  Lowest natural frequency for each mooring configuration 

Semi-taut catenary mooring Suspended catenary mooring Natural frequency 

[Hz] Small Medium Big Small Medium Big 

Mode1 0.30719 0.30893 0.31072 0.31425 0.31602 0.31785 

Mode2 0.46220 0.46476 0.46740 0.41428 0.41659 0.41899 

 

Chain 

Mode3 0.61064 0.61409 0.61766 0.63627 0.63985 0.64357 

Mode1 0.28591 0.29064 0.29103 

Mode2 0.43082 0.43784 0.43842 

 

Wire 

Mode3 0.56833 0.57774 0.57852 

 

N/A 

Mode1 0.29416 0.29749 0.28863 

Mode2 0.47075 0.47945 0.52086 

Chain -

Wire 
Mode3 0.54753 0.55987 0.66401 

 

N/A 
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    <Semi-taut catenary mooring>         <Suspended catenary mooring> 

Figure 3.13  Sample trajectories from forced oscillation tests (maximum, mean, 

and minimum excursion) 

 
 
 

3.2. Data Processing 

3.2.1. Video Processing 

 

The video files recorded by the optical tracking camera were processed to extract 

time histories of position for all markers.  Custom image processing software was 

developed using Matlab and applied to automate the video processing.   
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For the free oscillation tests, prior to image processing the time origin of the motion 

corresponding to the release of the chain should be determined.  Since electrical 

synchronization between the camera and the line-release device was not available, the 

only way to determine the time origin is to watch the video frame by frame and identify 

what appears to be the best origin.  It is not necessary to find the time origin for the 

forced oscillation tests since, as mentioned before, all of the experimental devices were 

synchronized together. 

The images of the video are coded in grayscale values.  One pixel can take a value 

from 0 to 255 intensity, 0 for black and 255 for white.  The markers have to appear 

brighter than the background to be easily detected.  So, if there were no noise, it would 

be enough to find those brighter points, above a value of 200 for example.  However 

the video is not perfectly noise-free due to false illumination (reflections), scratches on 

the observation window, etc., which sometimes causes the video tracking software to fail.  

Thus some improvement of the image processing was required. 

If noise from a certain frame is persistent in adjacent frames, by creating the 

difference between two frames one can eliminate a large part of the noise. The process is 

briefly described below: 

1. Create the difference P M M Mq= − −2 2 1 where Mq is the matrix giving the intensity 

for the current image, M 2 is the matrix of the following image and M1 the matrix 

of the prior image. 

2. Then, keep every pixel of P above a given value. Those pixels should correspond to 

the markers. 

3.  Using the retained points, match one pixel for each marker. 
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4.  Finally, apply a spatial weighted average to all pixels associated with each marker to 

find the best middle pixel point of the marker. 

To convert pixel values to actual positions, one has to determine the scale.  The 

scale is normally found by measuring the distance between calibrated marker locations 

placed at the extremities of the field of view (FOV).  For the large scale experiments in 

the OTRC basin where the size of the field of view FOV was quite large (approximately 

5 m square), creating an array of calibration markers to be placed in the test area was a 

challenge.  In order to be physically manageable, a 2.5 m square plate that is one 

quarter of the size of the FOV was constructed with calibration markers evenly spaced in 

both the horizontal and vertical directions.  As illustrated in Figure 3.14, the calibration 

array was placed in one quadrant of the FOV at a time and the marker locations were 

recorded by the video camera for subsequent scale determination.  

Two types of length scales were investigated.  One type is based on the distance 

from the centerline of the FOV.  In particular, calibration points were established at zero, 

0.5 m, 1 m, 1.5 m, 2 m, and 2.5 m locations, where zero and 2.5 m indicate the center 

and outer margin of the FOV, respectively.  From this, two individual orthogonal 

quadratic curves of scale are obtained at the horizontal and vertical centerlines.  The 

other type of scale is the regular constant length scale taken from the total length of each 

row and column of markers (Figure 3.14).   
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Figure 3.14  Length data for scale calibration 

 
 
 

Calibration of scale at any location other than the centerline in the FOV is 

implemented by following equation: 
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where   

ScaleH  and ScaleV   :  calibrated horizontal and vertical scale 

    ),( 0yxscaleHC  and ),( 0 yxscaleVC   :  scale at centerline 

    )( yscaleHR  and )(xscaleVR   :  scale at each row and column 

    x  and y   :  coordinates of any location within FOV 

    0x  and 0y   :  coordinates of centerline. 

  To verify the scale calibration, the inferred length of the mooring line recorded 

during forced oscillation and derived from use of the regular constant scale and the 

calibrated variable scale are compared.  The total length of line and the time-averaged 

length of each segment are compared in Figure 3.15 and Figure 3.16, respectively.  In 

both figures, considerably less variation in the inferred length (by almost half) is 

observed for the calibrated variable scale compared to the constant scale.  The 

remaining small variation in total length associated with the variable scale is assumed to 

be due to the effect of out-of-plane motion (which is not readily excluded in reality 

although the experiment is set to be confined to in-plane motion) and due to errors in 

alignment of the calibration plate at each of the four quadrants. 
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Figure 3.15  Comparison of total length of line between calibrated variable scale 

and regular constant scale 

 
 
 

In Figure 3.16, the pattern of variation in the averaged length is considerably 

removed, which indicates that the calibration provides a good consistency of scale over 

the entire FOV.  It should be noted that the length of each segment of chain is not 

exactly equal due to manufacturing tolerances and errors in placement of markers.  

Thus, the small variation of the averaged segment length is considered to be acceptable. 
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Figure 3.16  Comparison of time averaged length of each segment between 

calibrated scale and regular constant scale 

 
 
 

3.2.2. Geometric Processing 

 

In the experimental analysis, the Euler angles and the velocity and acceleration of 

each segment will be used to solve the dynamic equation of motion for the mooring line.  

From the measured position vectors, the velocity and acceleration of each node can be 

directly calculated using finite difference formulas.  To find the Euler angles between 

the mooring line and the horizontal axes at the node points of interest, cubic spline 

interpolation is used to approximate the shape of the curve.  Cubic spline interpolation 
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means that each portion of the line between two nodes is interpolated using a third order 

polynomial function, which ensures that the first and second order derivatives are 

continuous everywhere, including at node boundaries between line segments. 

 
 
 
 

Figure 3.17  Geometry of differential length of curve 

 
 
 
 

Once the polynomial functions for each segment are obtained, the angles and length 

can be calculated straightforwardly.  If )(xfy = , and )(xgz =  are the polynomial 

functions for the space curve segment between nodes A and B, the Euler angles and the 

length of the segment (length of the curve) are 
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( )1tan ( )− ′= f xφ   and  ( )1tan ( )g xθ − ′=               (3.3) 
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  (refer to Figure 3.17). 

For calculation of values at mid-points of line segments, the averaged kinematic 

values of two adjacent nodes might be used in the analysis, but this would generate some 

unnecessary errors.  To prevent this, the effect of the curvature of the line segment 

should be considered.  The mid-point of any given segment can be found as follows:  

1. First, divide the segment into N parts, A1, A2, …, An, … as shown in Figure 3.18. 

2. Calculate the length from point A to each An. 

3. When this length is equal to L/2, the position vector of the mid-point is obtained. 

Using the interpolated point, the velocities, accelerations and angles are calculated, 

instead of using the mid-point of the straight segment AB.  Furthermore, by using this 

procedure the discretization of one segment into several sub-segments can be readily 

accomplished. 
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Figure 3.18  Discretization of individual segment 

 
 
 

3.2.3. Optical Tracking Error 

 

Comparing the length of line over the entire time series of motion gives an indication 

of the errors involved with recording and extracting the coordinates of each node, 

because as shown in Figure 3.19 considerable difference in length is observed  

Recording errors are caused by distortion of the picture and 3-D (out-of-plane) motion 

effects.  The distortion is generated by parallax of the camera lens, and can be perfectly 

solved with a parallax compensation lens.  However such a lens was not employed in 

this study, so scale calibration has been implemented to reduce the scaling error of the 

distorted image (Section 3.2.1).  The transverse (out-of-plane) motion of the line might 

be induced by fluid lift forces and VIV (vortex-induced-vibration) which are real, 

unavoidable effects.  Out-of-plane motions can also be generated if the ends of the 

mooring line are not perfectly aligned in the plane of the FOV at initial set-up.  Thus, 

even if the experimental set-up is intentionally confined to 2-D planar motion, 3-D 

effects cannot be completely excluded.  Introducing another camera to record 
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information on the transverse coordinate would handle the issues addressed above but at 

the expense of increased complexity in image processing. 

 
 
 

 

Figure 3.19  Variation of the measured length of the big chain during free 

oscillation 

 
 
 

 Another possible optical tracking error is inconsistency in detecting the center-point 

of each reflective marker from frame to frame.  In the recorded image, any given 

marker is composed of several pixels.  The number of pixels associated with each 

marker in the initial time step should be retained over the entire time series. However, 
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due to the relatively high speed of the mooring line motion and the non-uniform 

intensity of lighting, some pixels occasionally appear to be blurred or some of them are 

not clear enough to be identified as part of the marker.  Moreover mooring line 

torsional rotation during oscillation results in a change of the original shape of the 

marker in the image.  All of these effects increase the error associated with node-center 

selection. 

 
 
 

 

Figure 3.20  Variation of the length of the big chain during numerical simulation 

of free oscillation 
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 Another source of error is numerical errors in the data processing algorithm.  To 

investigate this error, a numerical simulation of a free oscillation test was performed and 

the simulation data was processed in the same was as for the experimental data.  Figure 

3.20 shows the line length results from the numerical simulation of the test 

corresponding to the results in Figure 3.19.  It appears that the numerical processing 

errors are comparable to the experimental optical tracking errors, resulting in length 

errors of less than 1 mm over a total length of ~715 mm (i.e. errors of order 0.1%). 

 

3.2.4. Data Resampling by Polynomial Regression 

 

When we plot the linkage of all the nodes initially extracted from an image, it looks 

like a connection of straight line segments with angle-inconsistency at node (marker) 

locations resulting from the position measurement errors described above.  In Figure 

3.21, the middle node is located above the polynomial regression line while the other 

two are below the line.  This indicates an inconsistency in the shape of the curved line.  

By nature, a single curved line must be smooth and angles at adjacent nodes must be 

consistent.  In order to make a line smooth and achieve consistency, resampling is 

carried out by means of polynomial regression.  Alternative equations such as 

exponential and hyperbolic equations might be applied but, after testing various 

equations, the polynomial equation proved to be the best approximation for the 

curvilinear shape of a mooring line in motion.  
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Figure 3.21  Comparison of three node positions for original and resampled data 

 
 
 

Since the length of each segment is known, each node point is newly selected by the 

method given in section 3.2.2, providing frame-to-frame consistency in the total length 

of the moving line.  The order of the polynomial is determined through trial and error 

by checking the curve of the original data and the new resampled data until a satisfactory 

result is obtained.  Various orders of polynomials are required to adequately represent 

each different configuration of mooring line (semi-taut or suspended catenary).  

Occasionally two polynomial equations of low order might be preferable to a single 

equation of higher order.  In that case, the mooring line is split into two sections with at 

least one overlapping segment to provide continuity between the two sections, and then 

each low order equation is fitted to a corresponding section while forcing a match at the 

joint nodes. 
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Figure 3.22  Comparison of kinematic profile between original and resampled data 

 
 
 

In general, one might expect the overall motion to become smooth and consistent in 

time after polynomial resampling.  The results can be verified through observation of 

velocity and acceleration time series before and after resampling, as shown in Figure 

3.22.  For the case of forced oscillation, the resampling process also partly contributes 

to restituting the sinusoidal pattern of the line kinematics, which hardly remains in the 

original data.  Also, the resampling process might remove some transverse 3-D effects 

to a certain degree since both the length and shape of the line are recovered 

comparatively. 



 89 

3.2.5. Filtering 

 

Experimental time series data is generally accompanied by some noise which might 

significantly distort subsequently derived results, so some form of filtering is required to 

remove the noise.  In the present study two different types of measurements were made: 

force and image data.  The former is obtained by a strain gauge device while the latter 

is recorded by an optical device.  Accordingly, the noise characteristics could be 

different for each device.  One might consider designing and applying individual filters 

to each data set.  However compatibilities between the two sets of data should be 

preserved because they are synchronized and applied for dynamic analysis.  

Consequently a single low pass filter was designed and applied to all data sets. 

The Butterworth filter was selected for low-pass filtering because it has a maximally 

flat response in the passband with no ripples in either the passband or the stopband, as 

shown in Figure 3.23.  A drawback of the Butterworth filter is that the frequency 

response rolls off slowly between the passband and the stopband, thus a higher order 

filter is required to achieve a sharper roll-off. 
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Figure 3.23  Comparison of frequency response for a variety of electronic filters 

(horizontal axis: normalized frequency, vertical axis: frequency response) 

 
 
 

The transfer function H(s) of the Butterworth filter is the ratio of the output signal to 

the input signal expressed as a function of complex frequency s and may be expressed in 

the polynomial form 
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where  s jσ ω= +   :  complex frequency 
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n  :  order of filter 

   0R   :  frequency response at zero frequency 

   cω   :  cutoff frequency. 

The frequency response )(sR  of the Butterworth filter is expressed in terms of the 

transfer function as  

( )
2

22 0
2( ) ( )

1 / n
c

R
R H jω ω

ω ω
= =

+
                (3.6) 

and the response as a function of normalized frequency is shown in Figure 3.23.  The 

phase shift induced by the filter is 

[ ]( ) arg ( )H jϕ ω ω=                         (3.7) 

where [ ]arg   :  complex argument. 

In order to avoid filter-induced phase distortion in the synchronized data sets, one 

should employ so-called zero-phase filtering.  The process of zero-phase filtering is as 

follows:  

1. filter the time series data once in the forward direction,  

2. then reverse the filtered sequence for a second filtering pass, and  

3. finally flip the sequence again. 

During the process, all induced phases are canceled out by their counterparts.  The 

zero-phase filtering was conducted by the Matlab intrinsic function “filtfilt”. 
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Figure 3.24  Horizontal position vector before and after Butterworth filtering 

Figure 3.25  Tension data before and after Butterworth filtering 
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The design of a Butterworth filter involves specification of two parameters: the order 

of the filter and the cutoff frequency.  The order of the filter controls the slope of the 

roll-off between the passband and the stopband, with higher order providing better high 

frequency attenuation.  The cutoff frequency determines the width of the passband.  In 

filtering the recorded data sets, a single 3rd order filter with 10 Hz cutoff frequency was 

applied. 

Figure 3.24 and Figure 3.25 illustrate the effectiveness of zero-phase Butterworth 

filtering the position and tension data, respectively, in removing the high frequency noise 

while retaining the sinusoidal response.  The effectiveness of the filtering is even more 

pronounced in the velocity and acceleration signals derived from the filtered position 

data, as illustrated in Figure 3.26 and Figure 3.27.  It is observed that the sinusoidal 

response is significantly recovered in the normal acceleration signal after reconstructing 

the position data by filtering.  The recovery of the sinusoidal response in the kinematics 

increases the reliability of the drag or added mass coefficients determined by Fourier 

analysis of the measured line displacement.  From all the results shown, the importance 

of filtering the experimental data can be clearly perceived. 

The wiggly shape of the acceleration still apparent in the filtered signal shown in 

Figure 3.27 is not a desirable feature in the ideal case.  A second filtering pass could be 

performed to smooth out this apparent extra noise.  Or one might process the velocity 

and acceleration directly instead of applying a filter to the position vector.  However, 

while the profiles of kinematics would become smoother, this would distort each 

harmonic component and cause the kinematic data to be incompatible with the tension 

data.  Therefore direct filtering of the velocity and acceleration signals is not desirable. 
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Figure 3.26  Normal velocity before and after Butterworth filtering 

 

Figure 3.27  Normal acceleration before and after Butterworth filtering 
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3.2.6. Error Analysis 

 

Since calculation of line dynamics will be conducted using the experimental data, 

both numerical and experimental errors will exist.  Errors associated with 

measurements of position data are the primary source of error, and this error propagates 

into the derived velocity and acceleration data.  Kinematics are computed through the 

finite difference method based on position vectors, so numerical truncation error 

inherently arises.  However, since a 5-point scheme is employed for both first and 

second order time derivatives, one may assume that the truncation error is small enough 

to be negligible.  Thus, a major concern is focused on the measurement uncertainties 

which might be considered to substantially contaminate the inferred line dynamics and 

must be analyzed to validate the measurements. 

As mentioned, the error in the optical tracking data (position vectors) is mostly 

attributed to image distortion and inconsistency of node-point selection, which are 

characterized as systematic and random errors, respectively.  Using data from a forced 

oscillation test, the position uncertainty can be approximately obtained by comparing the 

optical tracking measurement of the top node with the hydraulic ram displacement 

measured by the MLDT (Magnetostrictive Linear Displacement Transducer) controller 

feedback signal, under the assumption that the top node almost follows the driving 

motion of the ram.  The calculated displacement error as a function of time and its 

standard error are shown in Figure 3.28.  In general terminology, the standard error is 

referred to as the standard deviation of the mean and can be calculated as 
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where N  is the number of repeated data.  However in the present context the standard 

error is computed as the standard deviation of error since there is no repeated data for 

any specific point. 

Velocity and acceleration are calculated from measured position data and therefore 

their corresponding errors can be estimated from the position error.  Uncertainty 

propagation of a derived quantity is predicted as follows.  If RxxxF n =),.....,,( 21  is a 

derived quantity and nxxx ,.....,, 21  are measurements of n variables, then 
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If 1 2... nR x x x= ± ± , then 
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where  R∆   :  uncertainty in the derived quantity 

nxxx ∆∆∆ ,...,, 21   :  uncertainty in each measured variable. 
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Figure 3.28  Experimental error and standard error for the position vector of the 

top node at each time step 

For the case of low-frequency (1/15 Hz) forced oscillation, using the standard error 

of 0.0011 m at the sampling rate of 40 Hz (Figure 3.28), the error propagation in velocity 

and acceleration are predicted as 0.0312 m/s and 4.3251 m/s2, respectively.  Reducing 

the sampling rate from 40 Hz to 10 Hz results in significant improvement, reducing the 

error to as low as 0.0066 m/s and 0.2282 m/s2.  Comparing with the mean value of 

velocity (0.1038 m/s) and acceleration (0.0435 m/s2), the uncertainty associated with 
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acceleration appears to be much larger than the mean value while the uncertainty in 

velocity is less than 10% of the mean.  It is therefore inferred that acceleration-

dependent results such as the added mass coefficient might not be reliable without 

further reduction of the error.  However for the case of high-frequency (1/5 Hz) 

oscillations, the mean of the acceleration is twice the magnitude of the uncertainty, 

which might provide 50% reliability.  Note that along with decreasing the sampling rate, 

data filtering is applied to reduce experimental errors. 
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CHAPTER IV 

4. RESULTS AND DISCUSSION 
 

4.1. Introduction 

 

The previous chapters have documented the theoretical and experimental techniques 

employed for this study of the dynamics of mooring lines.  In this chapter, a detailed 

discussion regarding the hydrodynamic characteristics of various mooring elements is 

presented, based on the results of free and forced oscillation tests.  Instead of analyzing 

the motion of the mooring line itself, the primary focus is on extracting the 

hydrodynamic force transfer coefficients, which in deepwater may have a significant 

influence on the motion of a moored body.  Before the analysis of the oscillation tests, 

the measurement of bending stiffness for wire rope elements is presented.  In order to 

validate the present experimental method of identifying force transfer coefficients for 

mooring lines, forward simulation of a mooring line with experimentally derived 

hydrodynamic coefficients is performed using the commercial program OrcaFlex.  Also, 

comparisons of numerical simulations with experimental data are provided focusing on 

the impedance to horizontal floater motions provided by hydrodynamic forces on a 

mooring line. 

 

4.2. Measurement of Bending Stiffness 

 

Steel cable and wire rope are widely used as mooring line elements.  For lengths on 

the order of hundreds of meters the effect of bending stiffness may generally be 
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neglected.  However for lengths of order 10 m or less (as used in the experiments 

described in Chapter III), the bending stiffness of the cable may cause significant 

internal shear forces due to line curvature.  In this case if the bending stiffness is 

neglected the inferred hydrodynamic force that is oriented in the normal direction can be 

significantly contaminated if bending stiffness effects are not taken into account.  For 

this reason, attempts were made to measure the bending stiffness of the wire rope 

segments used in this study, in order to further investigate the effect of bending stiffness 

on the hydrodynamics of a mooring line. 

As mentioned in Section 2.8, an indirect measurement technique was applied which 

derives the bending stiffness by solving the static equilibrium equation (2.55) with the 

measured position vector and the measured internal end force of a hanging wire span.  

Measurements were made for wires of three different diameters (Table 3.3) and each 

wire was tested for various line lengths and spans, as indicated in Table 4.1, where span 

is the straight horizontal distance between both ends of the hanging wire.  Applying a 

finite difference scheme with variable grid size to equation (2.55) yields the explicit 

system equations from which tension and shear force at each node can be calculated.  

Then, the bending stiffness at each node is obtained through the relations in equations 

(2.56) or (2.59).  Since this is an indirect measurement with some errors in the 

position vector, variation of the inferred bending stiffness along the longitudinal section 

is expected.  Averaging of the variation over the entire uniform section is therefore 

justified to arrive at a single representative value of the bending stiffness. 
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Table 4.1  Length and span of wire for each test of bending stiffness 

Case 1 2 3 4 5 

Length [m] 0.5 0.5 1.0 1.0 2.0 

Span [m] 0.37 0.45 0.74 0.90 1.75 

 

 

Figure 4.1  Bending stiffness of big wire 
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In Figure 4.1 through Figure 4.3, results from both relations (2.56) and (2.59) are 

presented for each measurement case and ‘Case 6’ indicates the case-averaged value for 

each wire.  As expected, increase in the size of the wire is correlated with increase in 

the bending stiffness.   The ratio of diameter to stiffness for the three wires is not 

obvious because the wires are built up with different strand structures varying from 6 by 

19 to 6 by 37, where the first numeral denotes the number of strands and the second 

numeral denotes the number of sub-wires constituting a single strand. 

Considerable variation in bending stiffness among the cases is observed for both 

relations.  This may be attributed to several sources: measurement errors of position 

vector and internal force, and distorted material characteristics associated with the 

inherent condition of the pre-rolled shape from the manufacturer.  The former can be 

improved by developing a fit-for-purpose laboratory device and measurement skill, but it 

is not feasible to handle the latter.  As shown, the magnitude of the bending stiffness is 

quite small for the wire rope segments studies, less than 0.1 N-m2.  So, if one applies 

the present measurement technique to materials with less bending flexibility, these errors 

are expected to become negligible. 

Generally, the bending stiffness inferred from relation (2.56) appears to be larger 

and more variable compared with that from (2.59).  Since the exact value of bending 

stiffness is unknown, evaluating the performance of both methods from the results given 

here is not readily achievable.  However, relation (2.59) should be more accurate than 

(2.56) as it does not depend on an assumption of small curvature, and this seems to be 

supported by the lower degree of variability in the EI values derived using relation 

(2.59). 
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Figure 4.2  Bending stiffness of medium wire 

  

Figure 4.3  Bending stiffness of small wire 



 104 

The present measurement method is found to be more efficient for the case with 

short length and span because in that case larger shear forces relative to tension are 

generated at both ends, so that static equilibrium and bending stiffness can be computed 

with relatively small error.  If the end tension is set to too small in the laboratory setup, 

large errors could be generated as a result of the static calculation, resulting in a 

fluctuating pattern of bending stiffness along the length of the cable.  Thus, it is noted 

that length and span must be adjusted to keep an adequate ratio between shear force and 

tension, for example, one where the shear force is twice as large as the tension.  For 

experiments with materials with large bending stiffness, the results might not be much 

affected by the shear:tension ratio. 

 

4.3. Free Oscillation Tests 

4.3.1. Preliminary Results 

   

For free oscillation tests only one force coefficient out of two is obtained by solving 

the dynamic equations given in the previous chapter because Fourier analysis is not 

applicable.  All kinematics are derived from the measured position vector, and hence 

only the internal force and hydrodynamic coefficients remain unknown.  The number of 

unknown variables is still more than the number of equations, thus an assumption 

associated with the hydrodynamic force is required to yield a closed system.  By 

introducing the boundary condition of zero tension at the free end of the line and the 

assumption that the added mass coefficient is known and constant, the equation of 

motion can be solved for the instantaneous value of the drag coefficient at every time 
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step.  The above assumption is made on the basis that, for free oscillations, the inertia 

force due to the added mass is generally an order of magnitude smaller than the drag 

force. 

The calculated drag coefficients, Cd, of the big chain are plotted against Reynolds 

number (Re) in Figure 4.4.  As shown in the figure, Cd at low Re, corresponding to the 

velocity data collected in the upper part of the chain, is unreasonably larger than 

conventional Cd values for a cylinder and there is considerable scatter in the Cd values.  

This may be due to several factors.  One is related to numerical error accumulated from 

the free-end segment toward the pivot-end segment as the explicit calculation proceeds.  

For segments close to the pivot point, every term in the equation of motion is very small 

so that even a very small error can have a big influence on the results.  Another factor is 

the simplifying assumptions made in the analysis, such as no friction drag, constant 

added mass coefficient, Morison force representation of hydrodynamics, etc. 

To check the influence of added mass, Cd values derived by assuming Cm=2 are 

plotted in Figure 4.5.  Comparing Figure 4.4 and Figure 4.5, it is evident that for free 

oscillations Cm does not have a large effect on the hydrodynamic behavior of the chain in 

the tested range of Reynolds number, which is in agreement with the assumption made in 

the computational procedure.  Further increasing the added mass coefficient does not 

significantly affect the results, thus Cm of unity is assumed to be a reasonable value for 

the calculation of Cd from free oscillation tests hereafter.  However, in order to estimate 

reliable force coefficients applicable to real design of mooring line systems, it is 

desirable to make a parallel investigation of both drag and added mass force. 
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Figure 4.4  Cd versus Reynolds number for the big chain, assuming Cm =1 

 

Figure 4.5  Cd versus Reynolds number for the big chain, assuming Cm=2 
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4.3.2. Criteria for Improvement of Drag Force Data 

4.3.2.1. Ratio of Inertia to Drag Force 

 

Figure 4.6 illustrates an interesting relation between the drag coefficient and the ratio 

of the inertia force to the drag force, both of which have been plotted against the 

segment number for the chain.  The segments are numbered from the pivot end toward 

the free end.  The two curves are similar in shape; as the inertia to drag force ratio 

increases the drag coefficient also increases at a similar rate.  This might indicate that 

Morison’s equation is not valid at inertia to drag force ratios larger than a certain value 

because in such case the Morison drag coefficients are characterized by the balance 

between drag and inertia force, not by the velocity.  This region is the so-called inertia 

dominant regime.  Also it is inferred that employing a constant added mass coefficient 

for the inertia dominant regime is not appropriate for modeling the line dynamics, even 

if the added mass doesn’t have a significant contribution to the total force balance. 

From the above observation it is concluded that not all data points in Figure 4.4 are 

reliable.  To remove the data points falling within the inertia dominant regime, only 

those points associated with an inertia to drag force ratio less than 1.0 were retained.  

However it was found that for inertia to drag force ratios around 1.0 (the so-called drag-

inertia regime) inaccuracies in the determination of the acceleration caused scatter in the 

inferred inertia force, which in turn affected the inferred drag force.  From Figure 4.7 it 

is clearly observed that the derived drag coefficients oscillate with fluctuations of 

acceleration.  In other words, data with less scatter can be obtained in the drag 

dominant regime when the inertia to drag force ratio is of order 0.5 or less.   
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Figure 4.6  Relationship between Cd and the ratio of inertia to drag force for each 

segment, assuming Cm=1 

 
 
 

Figure 4.8 is the Cd vs Re curve obtained by considering only those points associated 

with an inertia to drag force ratio less than 0.5.  Unlike in Figure 4.4, in this case there 

is much less scatter in the data, especially at low Re.  The regression curve for the data 

and the conventional curve for a smooth circular cylinder show a similar trend over the 

tested range of Reynolds number even though there is small difference in magnitude (as 

expected for chain).  Consequently, the inertia-drag force ratio should be considered as 

a criterion to test the validity of extracted force coefficients, as well as for determining 

the validity of Morison’s equation in the analysis of mooring line hydrodynamics. 
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Figure 4.7  Kinematics and drag coefficient of single node at mid section of chain 

 



 110 

 

Figure 4.8  Cd versus Reynolds number for the ratio of inertia to drag force less 

than 0.5, assuming Cm=1 

 
 
 

4.3.2.2. Ratio of Tension to Drag Force 

 

The motion of the upper section of the line close to the pivot point is mostly driven 

by the dynamics of the lower section.  This implies that the drag force on the upper 

segments is not only a function of the local normal velocity but also a function of the 

tension and hydrodynamic forces on the lower segments. And the drag force in the upper 

section of the line is usually much smaller than the other forces such as inertia, weight 

and tension.  For these reasons, it is difficult to resolve the drag force among the other 
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forces in the upper part of the line.   

In solving the equation of motion using an explicit scheme, the tension at a given 

node is obtained from the previous segment and is used as a boundary condition for 

solving the force equilibrium for the next segment.  The tension term seems to have a 

complex effect on the other dynamic forces.  For the reasons mentioned above, a 

certain relation between tension and drag force could be taken as a criterion to filter out 

the drag coefficient data driven by the dynamics of lower sections of the line.  This 

criterion is defined as the ratio of the contribution of tension in the normal direction to 

drag force, and results with a higher ratio than a selected threshold value will be filtered 

out.   

The result of applying a threshold ratio of 1.0 is presented in Figure 4.9.  Compared 

to Figure 4.4, the large values of Cd at low Re have been removed significantly while 

small Cd values which are mostly excluded in Figure 4.8 still remain.  This indicates 

that the small Cd values might be the result of a distorted balance of hydrodynamic 

forces caused by low accuracy in determining the kinematics.   

It therefore appears that combining two criteria (one for the inertia-drag force ratio 

and the other for the tension-drag force ratio) will provide a reasonable, mutually 

complimentary filter for the present drag force.  The thresholds should be chosen 

carefully.  Setting the thresholds of both ratios to values that are too small will result in 

loss of valuable information over the low Reynolds number range.  Figure 4.10, 

provides the Cd vs Re results after applying threshold criteria of 0.5 for the inertia-drag 

force ratio and 1.0 for the tension-drag force ratio.  Even though most of the data at low 

Re have been filtered out, a narrow band of data is observed for the range of Reynolds 
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number from about 300 to 1500.  The scatter is considered within an acceptable range 

considering the drag coefficient is derived under an unsteady state condition in which the 

added mass coefficient might not always be equal to a constant value.  To a certain 

extent the scatter is expected due to the assumption of constant added mass coefficient 

made at the outset. 

 
 
 

 

Figure 4.9  Cd versus Reynolds number for the ratio of tension to drag force less 

than 1.0, assuming Cm=1 
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Figure 4.10  Cd versus Reynolds number for the ratio of inertia to drag force less 

than 0.5 and the ratio of tension to drag force less than 1.0, assuming Cm=1 

 
 
 

4.3.2.3. Angle Versus Reynolds Number 

 

The criteria developed above may be used to filter out unreliable data on the basis of 

line dynamics.  Here an intuitively derived criterion is introduced which aims to filter 

out data subject to large experimental errors.  There are two kinds of errors that can be 

considered: one is node extraction error from the image which propagates into errors in 

the derived kinematics, and the other is accumulated error in the tension term when 

solving the equation of motion from the free end to the pivot end.  Both types of errors 
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are significant in the low Reynolds number region corresponding to the upper section of 

the line.  In the area associated with very small kinematics, the node extraction and 

accumulated tension errors might be larger than the kinematics themselves.   

In order to remove the highly contaminated results, one specifies a certain Reynolds 

number threshold at each angle of the line (i.e. each time step) in its sequence of falling 

motion.  This is determined by checking the acceleration and velocity profile with the 

drag coefficients at each time step of free oscillation to see if there are any abrupt 

changes.  Once the first node point with an abrupt change in the magnitude of the drag 

coefficient has been identified, then the Reynolds number corresponding to that node 

and time step is set as the lower limit.  For Reynolds numbers below these threshold 

values, all of the associated drag coefficients are discarded. 

Figure 4.11 displays the upper boundary of the trust zone for each time step (angle).  

The drag coefficients obtained from the node points below the solid line are considered 

as less contaminated by error.  In the middle of the graph, a lower boundary is observed 

which seems to be caused by acceleration fluctuation over the chain from the free end to 

the pivot end.  Typically for this area (angle range), the maximum Reynolds number 

threshold is about 450, unlike other areas (angle ranges) where the maximum Reynolds 

number threshold is around 200 to 300. 
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Figure 4.11  Trust region of analysis for experimental data 

 
 
 

To investigate how the errors accumulate when moving up the chain, the data 

analysis procedures were applied to an equivalent data set generated by numerically 

simulating the free oscillation test using OrcaFlex.  In the simulation the drag 

coefficient was set to 1.2 for the full Reynolds number range.  The backward analysis 

of the simulation data results in inferred drag coefficient values that are slightly scattered 

around 1.2.  This means that there are some errors in obtaining the kinematics from 

position data.  This may in part be due to the formulation of line dynamics in OrcaFlex 

being different than the dynamic formulation employed in this analysis, which would 

cause inconsistencies between the forward simulation and the backward analysis.  
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However the kinematic error is considered to be more significant because it is coherently 

observed in the analysis of the experimental data. 

The trust region boundary for the simulation data shown in Figure 4.12 was 

determined by drag coefficients that are bigger or smaller by 0.5 than the input value of 

1.2.  The reason for applying different filtering criteria for the experimental and 

numerical data is because the characteristics of two data sets are not equal: one is based 

on real motion and the other is artificially created.  The two plots (Figure 4.11 and 

Figure 4.12) exhibit a similar trust region boundary, which has a relatively high 

Reynolds number threshold for the middle the stage of motion.  Therefore it can be 

inferred that the intuitively chosen trust zone looks reasonable for identifying data 

distorted by experimental error.   

The filtered experimental data (i.e. data falling within the trust zone) are plotted as 

Cd versus Re in Figure 4.13.  Some of the data scatter at low Re is still retained, 

however the overall trend of the data appears to be unbiased.  By comparing Figure 

4.13 with Figure 4.10, it is noticed that many of the scattered data are associated with 

common errors related to both the dynamic analysis and experimental techniques used in 

the present study.  Thus, applying any of the criteria (inertia-drag ratio, or tension-drag 

ratio, or intuitive Re) would be sufficient to isolate the results considered to be in error 

no matter whether the errors are associated with experimental or numerical deficiencies.  

However in the subsequent analyses of the free oscillation tests, the data have been 

filtered by applying the inertia-drag ratio and tension-drag ratio criteria, not the intuitive 

Re criterion. 
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Figure 4.12  Trust region of analysis for simulation data 

 

Figure 4.13  Cd versus Reynolds number after filtering with intuitional criteria, 

assuming Cm=1 



 118 

4.3.3. Results of Small Scale Experiments 

 

The detailed procedures for extracting and filtering the instantaneous values of drag 

coefficient from the free oscillation tests have been explained.  Using these procedures, 

all the measured data of various sizes of chain were processed to determine the 

correlation between drag coefficient and Reynolds number.  The actual sampling rate of 

optical tracking was 150 Hz, but in order to reduce the error associated with velocity and 

acceleration the sampling rate was reduced to 15 Hz by decimation.  Since there was 

significant overlap in Reynolds number with the data sampled at 150 Hz, the factor of 10 

reduction did not affect the scope of the data much.  The inertia-to-drag force and 

tension-to-drag force filtering criteria were applied instead of the intuitive criteria 

discussed in the previous section, because the former are more objective and easy to 

justify from an engineering perspective.   

Each experiment was conducted three times for each test chain.  Instead of 

averaging the derived coefficients, individual results from all the repeated data are 

plotted on an arithmetic scale in Figure 4.14 to Figure 4.16.  The overall trend is for the 

drag coefficient to increase gradually with increasing Reynolds number, for the Re range 

represented by the tests.  The narrow band of scatter in the data is due to fluctuation of 

the inertia force and unintended transverse motion of the chain.  The fluctuation of the 

inertia force can be a real hydrodynamic phenomenon and it can also be due to 

inaccuracy in numerical computation of the acceleration.  The transverse motion is 

mainly created by lift force on the chain during the initial stage of falling right after 

release and its magnitude seems to increase with decreasing weight of chain, although 
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exact lift forces are not determined quantitatively.  Consequently the band width of the 

scatter in the drag coefficient tends to increase with decreasing chain size: approximately 

0.5 to 1.1 for big to small chain.   

Particularly in the results for the small chain, one additional narrow band of scatter 

with relatively small values of drag coefficients is observed at Reynolds numbers 

ranging from 500 to 1700.  The data points in this band are from the first two segments 

from the free end of the chain.  These low tension sections of chain experience severe 

transverse and torsional motions, which results in abnormal behavior of the kinematics, 

especially the acceleration, compared to that of neighboring sections.  This end-effect 

occurs in all chain sizes, but the impact on the inferred drag coefficient is only noticeable 

in the results for the small chain.  This means that as the chain gets larger and heavier, 

the influence of the transverse force is diluted by the influence of the other applied 

forces, such as the weight and the in-line hydrodynamic force.  Thus, the results from 

the larger size chain can be considered more accurate and reliable.  

In Figure 4.17, drag coefficients from all sizes of chain are included.  Since the 

chains used for the small scale tests have a similar twisted shape for the different sizes, 

coherence of the results between the three chains should be maintained.  Even though 

there are slight differences in the slope of the regression curve for the plots for each 

individual chain and all chains lumped together, all data are forming a shape of data 

scatter that is consistently connected, with a tendency that is similar to those observed in 

the three individual plots.  Also, the representative correlation curve is considered to 

adequately follow the trend of each individual case. 
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Figure 4.14  Drag coefficients for big chain (diameter: 4.8mm) 

 

Figure 4.15  Drag coefficients for medium chain (diameter: 4.1mm) 
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Figure 4.16  Drag coefficients for small chain (diameter: 3.4mm) 

 

Figure 4.17  Drag coefficients for all chain in small scale test 
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4.3.4. Results of Large Scale Experiments 

 

The analysis procedures for the large scale experimental data are identical to those 

for the small scale data since all the conditions are the same except for the line size, 

shape and length.  At large scale another accuracy issue arises from optical tracking 

because the degree of image distortion is comparatively larger.  The result is that 

uncertainty in the position data, and the derived velocity and acceleration, increases 

significantly.  The acceleration profiles show a white noise pattern, which can induce 

large error in the extraction of drag coefficients due to the distorted balance of 

hydrodynamic forces.  Thus, applying a digital filter to the position vector at each node 

is essential to obtain smooth and reasonable profiles of kinematics, as illustrated in 

Figure 4.18. 

As for the small scale tests, tests for big, medium and small size of chain were 

repeated three times, but only the small and big chain data were analyzed due to 

imperfections in the image data for the medium size chain.  More severe scatter and 

bias in the drag coefficient data is observed since additional error involved with optical 

tracking is weighting on the pre-existing experimental and analysis errors suggested and 

discussed in previous sections.  For filtering of these errors, both inertia-drag ratio and 

tension-drag ratio of unity (=1) are employed and the results are given in Figure 4.19 and 

Figure 4.20. 

As discussed for the small scale experiments, wider scatter is observed in the small 

chain results due to the bigger transverse motion end-effect.  It is observed that the 

trend for each of the two data sets (small and large chain) is different: one regression 
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curve is inclined while the other is declined with respect to increasing Reynolds number.  

This might be explained by the difference in the shape of each chain.  They are both 

plain type in shape but different in the ratio of length-to-width of the links: the big chain 

has a standard ratio but the small chain has an elongated length.  Nevertheless the data 

from both chains show good agreement at Reynolds number of 4000~6000.  Thus, 

these two sets of results have been combined in Figure 4.21 to provide data for a wide 

range of Reynolds number.  Since all repeated tests for each size of chain indicated 

similar results, a single data set for each chain size has been plotted in Figure 4.21. 

 
 
 

 
Figure 4.18  Profile of kinematics in normal direction at arbitrary single node  
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Figure 4.19  Drag coefficients for big chain (diameter: 1.954 cm) in large scale test 

 
Figure 4.20  Drag coefficients for small chain (diameter: 0.584 cm) in large scale 

test 
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Figure 4.21  Drag coefficients for all chains in large scale test 

 
 
 

4.4. Forced Oscillation Tests 

4.4.1. Fourier and Time Averaged Coefficients 

 

As opposed to the free oscillation case, for the forced oscillation tests the mooring 

line was anchored at the bottom and the top was forced to move in a prescribed 

unidirectional harmonic motion consisting of one or two frequency components.  The 

nonlinear response of the mooring line could be comprised of many frequency 

components.  The total hydrodynamic force acting on each section of the line also can 

be decomposed into individual components with corresponding frequencies because it is 
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purely motion-dependent.  Converting the hydrodynamic force time series into 

frequency components by Fourier transform enables the extraction of both drag and 

added mass coefficients. 

The hydrodynamic force is obtained by solving the equation of motion in a similar 

manner as for the free oscillation case with the exception that the measured top tension is 

applied as a boundary condition at each time step.  The resulting force coefficients can 

be time- or frequency-averaged values according to the methods of analysis explained in 

section 2.6.  These averaged values are expected to be more reasonable than the 

instantaneous ones obtained from free oscillation tests for the following reasons: no 

assumption is made for the added mass force and errors associated with kinematics may 

be reduced by the averaging process.   

Due to the similar trends of the estimated coefficients for the three different-sized 

chains and wires tested, only the results of the “big” size mooring are discussed in this 

chapter.  All other corresponding results for the other chain and wire sizes are presented 

in the Appendix A. 

Even though the motions of the mooring line consist of various harmonics, only 

harmonics with the frequencies of the forced oscillation are considered for the estimation 

of Fourier averaged values.  This is because the magnitudes of the harmonics for 

frequencies other than the forcing frequency are in general much smaller and those small 

quantities may not be resolvable with sufficient accuracy even by the averaging process.  

On the other hand, those small frequency components are taken into account when 

determining time-averaged coefficients (as opposed to frequency-averaged coefficients).   

Occasionally it is observed that a dominant harmonic in the total hydrodynamic force 
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is not aligned with the forcing frequency.  In such a case, the resulting coefficients 

show unrealistic and unreasonable values when compared to other coefficients 

determined at similar Keulegan-Carpenter or Reynolds number.  This indicates that the 

measured motion of the line might be significantly distorted by errors arising from either 

optical tracking or the filtering procedure, or both.  Thus, results from any other 

frequency than the forcing frequency are not acceptable. 

With Fourier analysis the Reynolds number (Re) does not appropriately represent the 

hydrodynamics of the oscillating mooring line because it only characterizes the 

amplitude of the velocity, not the frequency.  Thus, even though the line could be 

oscillated at various frequencies but with amplitudes that result in identical characteristic 

velocities, scaling with the Reynolds number could not distinguish between these cases.  

To better distinguish the effect of the oscillation frequency, the Morison coefficients 

obtained from the forced oscillation tests will be plotted against the Keulegan-Carpenter 

number 

In Figure 4.22, the Fourier-averaged results from five different oscillation tests of a 

single chain are given as function of the Keulegan-Carpenter number.  As can be seen, 

there exists a certain relation between the drag and added mass coefficients; rapid 

increase of Cm corresponds to large decrease of Cd, with negative-valued coefficients 

occasionally being indicated.  This trend is commonly observed but not so obvious 

when the level of variation in magnitude is moderate.  The occurrence of negative-

valued coefficients is attributed partially to the Fourier averaging process and inaccuracy 

of the derived kinematics.  The added mass coefficient shows especially large negative 

values and this mostly stems from large errors in the derived acceleration.   
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Figure 4.22  Fourier-averaged drag and added mass coefficient of chain (diameter: 

1.954 cm) with semi-taut catenary configuration 
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The effect of Fourier averaging is clearly explained from the drag coefficient results 

for the 1/1.5 Hz and 1/15 Hz combined frequency test shown in Figure 4.22.  

Coefficients at low KC (0~20) increase above a level around 2.0 while those at high KC 

(60~80) decrease below 2.0 by a similar amount, which indicates that the balance 

between all individual force components is maintained by reciprocal variation.  This 

also can be seen in the added mass results but it is not quite as clear for the drag 

coefficient. 

As exhibited in the variation with KC in Figure 4.22, significant inconsistency 

between the five different frequency tests is observed in the results for both Morison 

coefficients.  At first sight this might be regarded as the influence of measurement error 

but apparent inconsistencies can also arise from the following factors:   

1. Reynolds number effects, which are different for the five different test 

conditions, and 

2. the possible fluid-induced transverse oscillation which is not taken into 

account in the present analysis. 

Figure 4.22 shows that at KC number less than 20 the drag coefficient increases 

dramatically while the added mass shows a gradual decrease.  Data in this range of KC 

correspond to the high frequency motion in the combined low-high frequency forced 

oscillation test.  A mooring line undergoing combined frequency forced oscillation is 

expected to experience both in-plane and transverse (out-of-plane) oscillations of small 

amplitude due to wake reversal as the line returns back into its pre-induced wake zone, 

leading to anomalous pressure gradients.  Thus, in this case the variation in drag 

coefficient at low KC is considered to be mostly affected by small fluctuating motions 
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which are scarcely resolved by optical tracking with a field of view as large as that 

employed in this experiment.   

As discussed above, Fourier averaging, unidentified small vibrations, and 

experimental error can be the source of variations or abnormal trends in the force 

coefficients.  In addition to these factors, a biased ratio of inertia to drag force is also 

associated with such variations, which was investigated in the analysis of the free 

oscillation tests.  For instance, in the drag dominant regime the added mass coefficient 

is more variable, while in the inertia dominant regime the drag coefficient is more 

variable.  When this is superimposed with uncertainty of the experimental 

determination of kinematic values, the degree of fluctuation in the force coefficient 

intensifies severely.  Thus, it is inferred that employing Morison’s equation to any 

hydrodynamic regime does not always guarantee a reliable consequence. 

Figure 4.23 corresponds to Figure 4.22 except that in this case the Morison force 

coefficients have been determined by time averaging.  Here the expected trend of one 

coefficient increasing while the other decreases is not as readily apparent.  From the 

results of the 1/10 Hz and 1/15 Hz single frequency tests, it is recognized that inaccuracy 

in determining the acceleration in single low frequency oscillation could not be readily 

recovered by time averaging but, in conjunction with high frequency motion, significant 

reduction of error is achieved.  Compared to the results of harmonic-averaging, overall 

the drag coefficient results seem to vary with KC in a more consistent manner, except for 

some of the data associated with small amplitude motion at low frequency (which 

corresponds to the motion of sections of the line near the anchor point).  However, this 

consistency is not retained in the added mass coefficient results due to the relatively 
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large uncertainty of determining the local acceleration of the line. 

 
 
 

Figure 4.23  Time-averaged drag and added mass coefficient of chain (diameter: 

1.954 cm) with semi-taut catenary configuration 

 
 
 

As stated, two different configurations of mooring line were tested (semi-taut 

catenary and suspended catenary) to explore the seabed effect on the hydrodynamic 

behavior.  Rather large variation of the Morison coefficients at high KC is observed in 

the results for the suspended catenary mooring (Figure 4.24), where high KC indicates 

the motion of the upper section of the mooring line.  Since the motion of the line near 
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the anchor is slow (low KC), contact with the seabed does not seem to have a significant 

influence on the hydrodynamics of the mooring line. 

The abnormal hydrodynamic coefficients from the upper part of the line may be due 

to a higher degree of transverse oscillations being present in the suspended line 

compared to the semi-taut line.  Or, when the dominant frequency of motion is close to 

one of natural frequencies of the mooring line, as may have occurred with the combined 

1/1.5 Hz + 1/15 Hz forcing, possible resonant motion at a certain section of the line can 

occur, which might give rise to abnormal hydrodynamic behavior.  The bottom part of 

the suspended mooring is less constrained to transverse motion than that of the semi-taut 

mooring and tension variations associated with transverse motions may be present in the 

measured top tension.  Tension information that is inconsistent with 2D motions may 

give rise to large variation of the coefficients at the initial stage of the calculation, as the 

explicit computation proceeds from the top to the bottom of the mooring line and the 

degree of 3-D effect in tension decreases.  Except for the anomalous behavior at high 

KC, most of the trends and characteristics in the force coefficients for the suspended 

catenary mooring test appear to be similar to those shown for the case of a semi-taut 

catenary mooring. 
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Figure 4.24  Fourier-averaged drag and added mass coefficient of chain (diameter: 

1.954 cm) with suspended catenary configuration 
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Results for the big size wire without considering bending stiffness are shown in 

Figure 4.25.  The bending stiffness of wire tested in this study was small enough to be 

neglected in the dynamic computation because the hydrodynamic results from the finite 

bending stiffness (EI = 0.1 N-m2) (Figure 4.26) and no-bending stiffness (Figure 4.25) 

conditions show no remarkable difference.  As shown in the chain tests, the drag 

coefficients are confined to a rather narrow band whereas the added mass coefficients 

display a large variation with KC.  However, the degree of added mass variation in the 

wire results is larger than for the chain results, which can be attributed to the fact that a 

slackened wire may undergo relatively large transverse motion due to twisting and 

bending.  Thus, the variation of the added mass seems to be mostly attributed to the 

kinematic error arising from measurement and to material properties (torsional and 

bending stiffness). 

At low KC, the drag coefficient increases as the added mass coefficient decreases 

dramatically.  This usually occurs in the inertia dominant regime where the magnitude 

of both the velocity and acceleration is relatively small so that even tiny errors in the 

kinematics can distort both hydrodynamic coefficients.  In the drag dominant regime 

the drag coefficients seem to be reasonable while the added mass coefficients exhibit a 

large variation.  Thus, it can be inferred that the variation of the added mass coefficient 

at low KC is mainly affected by experimental error and the variation at high KC is 

driven by both experimental error and the fact that the Morison equation is reliable only 

in the drag-inertia regime. 
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Figure 4.25  Fourier-averaged drag and added mass coefficient of wire (diameter: 

0.915 cm) with semi-taut catenary configuration 
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Figure 4.26  Fourier-averaged drag and added mass coefficient of wire (diameter: 

0.915 cm) with semi-taut catenary configuration in consideration of EI=0.1 
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Figure 4.27  Fourier-averaged drag and added mass coefficient of chain – wire 

(diameter : : 1.954 cm - 0.915 cm) with semi-taut catenary configuration 
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Figure 4.28  Comparison of time-averaged coefficients between natural coordinate 

and global coordinate systems 

 
 
 

Similar trends with a larger amount of scatter are observed in the results for the 

combined chain-wire-chain mooring (Figure 4.27).  The line was comprised of 5 m of 

wire with 1 m long lengths of chain at each end.  Since the wire occupied most of the 

length of the line and both ends of the wire were less confined in the transverse direction 

than in the case of an all-wire mooring line, more uncertainties in the measured 

displacement and tension associated with 3-D effects are expected.  Also, the 

connections between the chain and wire are regarded as discontinuities in the system, 

which can intensify the uncertainty. 

Equations of motion in both the natural coordinate system and the global coordinate 
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system were provided for the purpose of comparison in Chapter II.  All the results 

previously shown are the outcome of applying the equations of motion in the natural 

coordinate system.  In Figure 4.28, the results from applying the equations of motion in 

both coordinate systems for the test with the big size chain with 1/5 Hz forced oscillation 

are given.  It is observed that the hydrodynamic force coefficients computed from both 

formulations are almost identical.  Thus, the performance of those equations in terms of 

the computation of the hydrodynamic force can be deemed as being equivalent. 

 

4.5. Coupled Dynamics of a Mooring Line Attached to a Floating Body 

 

In deep water the impedance provided to the motions of a floater by its mooring 

system can be significant.  Both the mass (inertia) and damping provided by the 

mooring can be significant contributions to the system mass and damping.  Modeling of 

the system dynamics therefore requires coupling the dynamics of the floater with that of 

the mooring system. 

It is important to distinguish between the local hydrodynamic inertia and damping 

forces that affect the mooring line motion and the contribution to the inertia and damping 

of the floater provided by each of the mooring lines.  In this section we are concerned 

primarily with the latter. 

For example, mooring line damping is usually classified into friction damping and 

hydrodynamic damping, which is the major concern of the present study.  In addition to 

that, inertia forces from the mooring and the weight of the mooring line can contribute to 

the total tension exerted at the top of the line (i.e. at the attachment to the floater).  The 
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horizontal component of this tension that is 90° out of phase with the horizontal motion 

of the floater contributes to damping of the floater motions.  The horizontal component 

of tension that is either in phase or 180° out of phase with the horizontal motion of the 

floater contributes static restoration or inertial resistance to the floater motions, 

respectively. 

Note that in deep water the contribution to the dynamic top tension of the mooring 

line from the integrated effect of the hydrodynamic forces acting on the mooring line 

will be relatively small.  In this case the dynamic top tension is determined primarily by 

the balance between the line inertia and weight. 

Consider the simple case of a floating body moored with a single mooring line and 

undergoing simple harmonic motion sin( )X A wt=  under the action of 

monochromatic waves acting on the body.  The corresponding equation of motion in 

the horizontal direction can be expressed as  

b HD HS HWM X BX T T F+ = + +�� �                     (4.1)����

where  X   :  horizontal displacement of floating body  = )sin(wtA , 

    bM  :  mass of floating body (including added mass), 

    B   :  damping coefficient, 

    HWF   :  hydrodynamic horizontal wave exciting force, 

HDT , HST   :  dynamic and static component of horizontal tension, respectively. 

The damping coefficient B in equation (4.1) does not contain the influence of the 

dynamic behavior of the mooring line.  The static tension balances the mean drift force 

component of the wave exciting force, so that the floater oscillations are referenced to 
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the mean offset position of the floater.  The dynamic tension is the fluctuating part of 

the tension due to the motion of the body and the induced motion of the mooring line.  

Since the mooring line dynamics are nonlinear, the dynamic tension could be composed 

of various harmonic components including a component at the oscillation frequency of 

the floating body which is supposedly dominant.  Separating the in- and out-of-phase 

components from the dominant harmonic of line tension can clearly demonstrate the role 

of line tension in the overall motion of the floating body.   

The single harmonic component of horizontal tension can be written as 

1 2sin( ) sin( ) cos( )HDT C wt C wt C wtφ= + = +               (4.2) 

The first term on the right hand side can be regarded as the inertia or restoring 

component of tension and the second term is obviously the damping component.  

Determining whether the in-phase component is inertia or restoring force is purely 

dependent upon the phase of the harmonic.  Thus, if a phase shift of 180° is indicated 

then the in-phase component plays the role of inertia, while if a 0° phase shift is 

indicated then the in-phase component plays the role of a restoring force.  From the 

simplified example given above, it is deduced that tension can provide contributions to 

inertia or restoring force of the floating system as well as to the system damping. 

The forced oscillation tests described in the previous section can be analyzed to 

determine the relative contribution of hydrodynamic forces on the mooring lines to the 

in- and out-of-phase horizontal components of top tension.  Such an analysis may 

provide insight into the effect of uncertainty in the Morison force coefficients on the 

inertia and damping forces provided by a mooring line to a floating body. 

Figure 4.29 illustrates the decomposed top horizontal tension and hydrodynamic 
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force components for the case of single harmonic forced oscillation at 1/15 Hz.  

Recalling that the large scale experiments were designed to be representative of a 1:50 

scale mooring system, the 1/15 Hz oscillation frequency is representative of low 

frequency surge motion of a large displacement moored floater.  In addition, the 

magnified displacement signal associated with the forced oscillation of the top of the line 

is given to facilitate the comparison of phase shift between each harmonic force. 

It is noticed that in-phase tension is more significant than out-of-phase and thus 

tension mostly contributes to the horizontal restoring force in the case of low frequency 

motion of a floating body.  Since the influence of the hydrodynamic force is very small, 

the tension is considered to be rather driven by inertia of the line and weight variations 

as the line lifts off and drops back onto the seafloor.  However the small out-of-phase 

component of horizontal tension that does contribute to damping of the horizontal floater 

motions is almost entirely due to the hydrodynamic force on the mooring line. 

On the other hand, for relatively high frequency motion the situation is quite 

different, as illustrated in Figure 4.30.  In this case the horizontal tension and the 

hydrodynamic force are comparable in magnitude but about 145° out of phase.  And the 

horizontal tension is almost 90° out of phase with the top displacement.  This indicates 

that in high frequency motion the mooring line provides mostly damping, but also a 

relatively large restoring force to the floater.  The out-of-phase horizontal tension (or 

damping force) is dominated by the hydrodynamic forces on the line.  The 

hydrodynamic force also contributes significantly to the in-phase horizontal tension, 

which provides a restoring force to the floater. 
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Figure 4.29  Experimentally determined top horizontal tension and hydrodynamic 

force components of mooring line (chain of 1.954 cm) undergoing forced oscillation 

at 1/15 Hz [Unit of force is Newton] 
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Figure 4.30  Experimentally determined top horizontal tension and hydrodynamic 

force of mooring line (chain of 1.954 cm) undergoing forced oscillation of 1/5 Hz 

[Unit of force is Newton] 
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Figure 4.31  Experimentally determined top horizontal tension and hydrodynamic 

force of mooring line (chain of 1.954 cm) undergoing forced oscillation with 

multiple frequencies of 1/3 Hz and 1/15 Hz [Unit of force is Newton] 

 
 
 

For forced oscillation at combined low and high frequencies, the summation of the 

two dominant harmonic components of tension is provided in Figure 4.31.  Since the 

amplitude of low-frequency oscillation is much larger than that of high-frequency 

motion, the overall trend and magnitude of tension appear to be similar to the low 
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frequency case.  It is observed that the damping portion of tension is mainly attributed 

to the high frequency motion while the restoring portion of tension is attributed to low 

frequency motion.  As a result of the superposition of high and low frequency motions, 

amplification of the dynamic tension is achieved.  Through all the results given, it may 

be concluded that the dynamics of a mooring line attached to a floating body provides 

both damping and restoring contributions to the floating system, that in most cases the 

hydrodynamic force on the mooring line plays an important role in determining the 

magnitude of the damping or restoring forces, and that the relative magnitude of such 

forces is mostly driven by the frequency at which a mooring line oscillates. 

The effect of drag and added mass coefficient on mooring resistance is briefly 

investigated through numerical simulation of a single mooring line.  For the 

comparison, conventional values of Morison coefficients (Cd=1.2 and Cm=1) and the 

experimentally-derived values (Cd = time-averaged coefficients from Figure 4.23, and 

Cm = individual test-averaged coefficients as follows : 0.78 for 1/5 Hz , 4.77 for 1/15 Hz, 

1.59 for the combined frequency case) from the present experiments were respectively 

applied for the simulation of forced oscillation at three different frequencies: two single 

frequency cases at 1/5 Hz and 1/15 Hz and one combined frequency case of 1/3 Hz plus 

1/15 Hz.  The tension results from all six simulations are given in Figure 4.32 through 

Figure 4.34.   

Since, as shown in the results with the experimentally-derived coefficients, the 

hydrodynamic influence of the mooring line on the horizontal tension is quite small for 

low frequency motion, the effect of the Morison force coefficients (and uncertainty in 

the force coefficients) is negligible.  But in the other two cases, a remarkable difference 
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in the magnitude of tension is demonstrated (increase of 5% in multiple harmonic 

motions and 20% in high frequency motion).  Although 5% might seem to be a 

negligible improvement, it can still make a more important contribution against resonant 

motion of a floating body than the improvement in high frequency motion, since the 

resonance is mostly induced by the low frequency wave drift force.  Also, there are 

small phase shifts which can change the balance between in-phase and out-of-phase 

components.  Thus, for reasonable prediction of the motion of a floating body it is 

recommended to employ the appropriate values of the force coefficients. 

Comparison of the tension results between experiments and simulation enable us to 

verify the derived hydrodynamic coefficients (Figure 4.29 ~ Figure 4.34).  Except the 

single low frequency motion test, the results of simulations with experimentally 

determined values of the coefficients show better agreement with measurements, which 

indicates that the coefficients suggested from the present study reasonably represent the 

hydrodynamic characteristics of mooring elements.  In the case of 1/15 Hz oscillation, 

underestimated values of tension are observed, which might be the result of employing 

relatively large added mass coefficients, which in turn result in lower mooring line 

accelerations.  Since the large values of added mass coefficient originated from large 

uncertainty associated with acceleration, the extracted coefficients from low frequency 

tests seem to be unreliable. 
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Figure 4.32  Horizontal tension from the simulation of forced oscillation with 

frequency of 1/15 Hz [Unit of force is Newton] 
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Figure 4.33  Horizontal tension from the simulation of forced oscillation with 

frequency of 1/5 Hz (legends are same as in Figure 4.32 and unit of force is Newton) 
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Figure 4.34  Horizontal tension from the simulation of forced oscillation with 

multiple frequencies of 1/3 Hz and 1/15 Hz (legends are same as in Figure 4.32 and 

unit of force is Newton) 
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CHAPTER V 
5. SUMMARY, CONCLUSIONS AND FUTURE STUDY 

 

The present study was structured to develop and establish a efficient, repeatable, 

automated, low cost, and standardized measurement technique for estimation of Morison 

drag and inertia coefficients for slender body elements over the full operating range of 

Re and KC number in three-dimensional flow situations. 

The hydrodynamics of two mooring line elements (chain and wire rope) was 

investigated through small scale and large scale experiments in conjunction with 

conventional dynamic modeling of slender bodies.  Morison’s equation was employed 

for the hydrodynamic force model, in which the force is decomposed into a velocity-

dependent drag force and an acceleration-dependent inertia force.  These two forces are, 

in general, well correlated with the Reynolds number and the Keulegan-Carpenter 

number according to the nature of the surrounding flow around the body.  Thus, to 

provide correlations with both parameters, laboratory tests involving free and forced 

oscillations of a mooring line were performed. 

In order to provide data for a wide range of Re and KC numbers, three different sizes 

of mooring line elements were investigated for each test condition.  During the 

experiments the displacement of the mooring line at a large number of points and the end 

force in the line were measured through high speed optical tracking and a triaxial load 

cell, respectively.  In order to reduce the experimental uncertainty, reconstruction of the 

measured data through polynomial regression (smoothing) and digital filtering was 

implemented.  With the experimentally measured nodal positions along the line and line 
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end forces as input data, the equation of motion for the line was solved to determine the 

hydrodynamic force at each time step. 

In addition to the hydrodynamic analysis, measurements of bending stiffness for wire 

ropes were performed, as there was a concern that internal shear forces generated by 

bending in the relatively short lengths of wire rope employed for the tests could be 

significant.  Two shear-curvature relations were proposed: one with the assumption of 

small angle, the other with no such assumption.  The results from the new relation 

without the small angle assumption showed less variation than those from the 

conventional relation.  Values of the bending stiffness for all wire ropes tested were 

found to be small enough to be negligible in the hydrodynamic analysis. 

From the free oscillation tests, instantaneous values of drag coefficients were derived 

from the measurements based on the assumption of constant added mass coefficient.  

Since the preliminary results had considerable scatter and bias due to measurement error 

and the assumption of constant added mass coefficient, a couple of criteria were 

introduced to filter out unreasonable data.  The filter criteria were based on the ratio of 

inertia to drag force and the ratio of tension to drag force, and both were shown to fulfill 

the task well.  The drag coefficients from both the small scale and the large scale tests 

exhibited a narrow range of scatter and the variation with Re can be summarized as 

follows: from the small scale data Cd varies from 0.7 to 2 for Re ranging from 250 to 

2500, and from the large scale data Cd varies from 0.5 to 1.8 for Re ranging from 500 to 

25000. 

From the forced oscillation tests, instead of instantaneous values, Fourier- and time-

averaged values of both drag and added mass coefficients were obtained as a function of 
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KC number.  Only the Fourier-averaged coefficients from the response harmonic at the 

same frequency as the forcing frequency were considered because all other (generally 

much smaller magnitude) harmonic components were contaminated by either the optical 

tracking error or the filtering process.  Due to low accuracy in determining the 

acceleration, the derived added mass coefficients in general exhibited more scatter than 

the drag coefficients and they did not have a consistent KC-dependence.  Balance 

transfer between the drag and added mass force was observed through the entire set of 

results.  That is, as the drag coefficient increases, the added mass coefficient decreases, 

sometimes falling below zero. 

Two different configurations of chain mooring were tested, semi-taut catenary and 

suspended catenary, to investigate the effect of basin floor contact.  The anchor point 

for the suspended catenary mooring was raised above the floor so that the line near the 

anchor would never come in contact with the floor.  This suspended configuration was 

found to be an improper configuration for the estimation of Morison force coefficients 

due to the unexpected hydrodynamic behavior of the upper section of the mooring line.  

The results of all-wire and chain-wire-chain mooring configurations showed larger 

variations with KC number in the Morison force coefficients, particularly at low KC, 

possibly due to bending and torsional effects associated with the wire rope construction.  

Overall, it is observed that the Fourier-averaging process can itself attenuate the errors 

associated with measurement of line kinematics. 

Time-averaged Morison coefficients were estimated by applying the least-square 

method to the amplitude spectrum of the Morison force.  The coefficients appeared to 

be larger in magnitude than the Fourier-averaged coefficients at low KC number due to 
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the relatively low accuracy in determining the kinematics, which could hardly be 

recovered by the time averaging process.  Two different dynamic equations, one 

formulated on the natural (body-fixed) coordinate system and the other on the Cartesian 

global coordinate system, were examined for the computing performance of the 

hydrodynamic force on the mooring line and it is concluded that both formulations carry 

out the task equivalently. 

The impedance provided by a mooring line attached to a floating body was discussed 

in terms of the damping and restoring contribution of the line to the motion of the body.  

From the experimental results it was shown that in low frequency motion the mooring 

line mostly contributes a quasi-static restoring force while in high frequency motion the 

mooring lines generates a large damping contribution to the floater motion.  Since the 

low frequency surge/sway/yaw motions of a moored floater are generally resonant 

responses, they are controlled by damping.  This means that even though in low 

frequency motion the damping force induced by the mooring line is small relative to the 

restoring force, to the extent that the damping force is dominated by the integrated effect 

of the hydrodynamic forces on the line, uncertainty in the Morison force coefficients can 

be directly related to uncertainty in the predicted low frequency motion of the floater. 

For both the validation of experimentally-derived coefficients and the investigation 

on the importance of Morison force coefficients on mooring impedance, forced 

oscillations of a mooring line were simulated numerically with both conventional values 

of force coefficients and time-averaged coefficients estimated from the experiments.  

By comparison of the simulated dynamic tension based on the experimental coefficients 

and traditional coefficients, it was noted that the experimental coefficients well recreated 
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the dynamic tensions observed in the experiment and thus can be considered to be well 

estimated through the present analysis. 

Throughout the entire procedure given here, the objectives of the study have been 

pursued and most of them have been achieved in the aspect of developing a new 

measurement technique.  However, the accuracy and reliability of the derived force 

coefficients have not been addressed satisfactorily due to considerable measurement 

error.  Moreover, detailed investigation of three dimensional flow conditions associated 

with out-of-plane top end displacements and out-of-plane motions associated with VIV 

and lift forces has not been performed at all. 

Although initially pursued, the planned extension to 3D measurements was found to 

be unfeasible due to obstruction of the field of view in front of the observation window 

beneath the wavemaker in the OTRC basin.  Therefore, 3-D optical tracking with  

reduced field of view using multiple cameras installed in waterproof enclosures in the 

basin could be pursued as future work and is expected to resolve the measurement 

uncertainty problem to a certain extent.  However this will be a very expensive 

experimental set-up.  Improvement of the image calibration technique, which was the 

toughest challenge during and after the large scale tests, should also be pursued to 

further minimize the optical tracking error. 
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APPENDIX A 

A. HYDRODYNAMIC COEFFICIENTS ESTIMATED FROM THE 

FORCED OSCILLATION TESTS IN THE OTRC BASIN 

 

A.1. Small Size Mooring 

 

Graph legend [ � : Frequency = 1/5 Hz,  � : Frequency = 1/10 Hz,  × : 

Frequency= 1/15 Hz,   : Frequency = 1/1.5 & 1/15 Hz,  � : Frequency = 1/3 & 

1/15 Hz ] 

 

 

Figure A.1  Time-averaged coefficient of chain (diameter: 0.584 cm) with semi-taut 

catenary configuration 
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Figure A.2  Fourier-averaged drag and added mass coefficient of chain (diameter: 

0.584 cm) with semi-taut catenary configuration 



 163 

 

Figure A.3  Time-averaged drag and added mass coefficient of chain (diameter: 

0.584 cm) with suspended catenary configuration 
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Figure A.4  Fourier-averaged drag and added mass coefficient of chain (diameter: 

0.584 cm) with suspended catenary configuration 
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Figure A.5  Time-averaged drag and added mass coefficient of wire (diameter: 

0.479 cm) with semi-taut catenary configuration 
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Figure A.6  Fourier-averaged drag and added mass coefficient of wire (diameter: 

0.479 cm) with semi-taut catenary configuration 
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Figure A.7  Time-averaged drag and added mass coefficient of chain – wire 

(diameter: 0.584 cm - 0.479 cm) with semi-taut catenary configuration 
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Figure A.8  Fourier-averaged drag and added mass coefficient of chain – wire 

(diameter: 0.584 cm - 0.479 cm) with semi-taut catenary configuration 
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A.2. Medium Size Mooring 

 

Graph legend [ � : Frequency = 1/5 Hz,  � : Frequency = 1/10 Hz,  × : 

Frequency= 1/15 Hz,   : Frequency = 1/1.5 & 1/15 Hz,  � : Frequency = 1/3 & 

1/15 Hz ] 

 

 

Figure A.9  Time-averaged coefficient of chain (diameter: 0.897 cm) with semi-taut 

catenary configuration 

 



 170 

 

 

Figure A.10  Fourier-averaged coefficient of chain (diameter: 0.897 cm) with semi-

taut catenary configuration 
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Figure A.11  Time-averaged coefficient of chain (diameter: 0.897 cm) with 

suspended catenary configuration 
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Figure A.12  Fourier-averaged coefficient of chain (diameter: 0.897 cm) with 

suspended catenary configuration 
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Figure A.13  Time-averaged coefficient of wire (diameter: 0.767 cm) with semi-

taut catenary configuration 
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Figure A.14  Fourier-averaged coefficient of wire (diameter: 0.767 cm) with semi-

taut catenary configuration 



 175 

 

Figure A.15  Time-averaged drag and added mass coefficient of chain – wire 

(diameter: 0.897 cm - 0.767 cm) with semi-taut catenary configuration 
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Figure A.16  Fourier-averaged drag and added mass coefficient of chain – wire 

(diameter: 0.897 cm - 0.767 cm) with semi-taut catenary configuration 
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A.3. Big Size Mooring 

 

Graph legend [ � : Frequency = 1/5 Hz,  � : Frequency = 1/10 Hz,  × : 

Frequency= 1/15 Hz,   : Frequency = 1/1.5 & 1/15 Hz,  � : Frequency = 1/3 & 

1/15 Hz ] 

 

 

Figure A.17  Time-averaged drag and added mass coefficient of chain (diameter: 

1.954 cm) with suspended catenary configuration 
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Figure A.18  Time-averaged drag and added mass coefficient of wire (diameter: 

0.915 cm) with semi-taut catenary configuration 
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Figure A.19  Time-averaged drag and added mass coefficient of chain – wire 

(diameter: 1.954 cm - 0.915 cm) with semi-taut catenary configuration 
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