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ABSTRACT 

 

Simulation of Vertical Ship Responses in High Seas. 

(December 2008) 

Suresh Rajendran, B.Tech, Cochin University of Science and Technology, India 

Chair of Advisory Committee: Dr. Cheung Hun Kim 

 

  This research was done to study the effect of sea severity on the vertical ship 

responses like heave and pitch. Model testing of a 175m moored container ship with zero 

heading speed was done for different sea states varying from very rough to very high 

seas. Transfer functions were extracted using Volterra model which constitutes both 

linear and quadratic part. The experimental linear transfer functions were calculated 

using Volterra linear model and were compared with linear transfer function from the 

hydrodynamic theory. Experimental second order transfer functions were also extracted 

using Volterra quadratic model and their behavior was studied for different sea states. 

After the extraction of linear and second order transfer functions total responses were 

reconstructed and compared with the measured responses. This also helped to investigate 

the contribution of second order part to the total vertical ship responses. 

  In the last stage of the research a new semi- empirical method was developed 

called as ‘UNIOM’ for the prediction of the responses. Laboratory input waves and 

theoretical LTFs were used for the simulation of ship response and these were compared 

with measured responses.  
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CHAPTER I 

INTRODUCTION 

1.1 Problem statement 

Ship motions in high seas have been the area of interest for the last three, four 

decades. But very few experiments were conducted in real random sea environment 

which may be due to difficulty in setting up the experiment and measurement of the 

data. Most of the experiments have relied on regular waves for the prediction of ship 

response in high seas. Again, lots of experiments were conducted on the lateral motion 

of ship for the detailed study of mooring problems. But Ship response in the high seas 

has been little studied especially in the area of vertical responses to the high seas causing 

green water and slamming. In order to achieve the objective one needs to have sound 

understanding of the fundamental physical meaning of the motion. This may be best 

achieved by doing the careful experiment and detailed analysis. The note herein 

describes the experiment and analysis of a ship model in the seas of various severities, 

where the model is moored in the head random waves for simpler experiment as the 

basis for the initial development. The analysis was carried out applying the Volterra 

linear and quadratic model to find LTF and QTF which are defined in the following 

pages. Volterra cubic model is desirable but the algorithm has not been prepared by the 

time of research. Volterra model is shown schematically in Figure 1-1. 

 

 ____________________ 

This thesis follows the style of Journal of Waterway, Port, Coastal, and Ocean 

Engineering. 
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Our study was done on the vertical ship responses in random non linear waves 

produced in the wave tank. This gives clearer picture of the ship behavior in highly 

nonlinear random seas. Now researches are aware that more detailed advanced study on 

the realistic random sea waves are required.  

In Conventional ship building practice, ship response is studied based on linear 

input output method using linear transfer function (LTF). This is called system 

characteristic. LTF calculated using hydrodynamic theory is purely independent of the 

sea characteristics. But the experiments on the highly nonlinear random seas have shown 

that LTF is affected by the sea severity. Such a phenomenon is only visible in high seas 

for which linear theory is not applicable. As the sea severity increases the non linearity 

goes from second order to higher orders. This study has given emphasis on second order 

waves and its response. Linear and second order response transfer function was 

developed using Volterra model and the responses were extracted so as to study the 

effect of nonlinear waves on the vertical ship response. 

The above mentioned study necessitates the requirement of a prediction model 

for high seas. So a new semi-empirical model ‘UNIOM-Motion’ was developed in the 

final stage of the research for the prediction of ship response in high seas. This method 

can be found to be analogous to Volterra model to some extent. Figure1-2 shows the 

schematic diagram for UNIOM model. 
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Figure 2-1 Schematic diagram for Volterra Model 

 

 

 

 

 

Figure 2-2 Schematic diagram for UNIOM-Motion 

 

1.2 Background 

Linear theory is based on the assumption that ship is wall sided and travelling on 

a straight course in very low seas (Cummins 1973). Linear wave assumption was used to 

calculate the system characteristics of the ship which do not depend upon the sea 

condition. Dalzell (1962) conducted experiment on the pitch motion of a fast moving 

destroyer in high seas. It was found that pitch motion was largely affected by sea 

severity and contrary to the popular belief it decreases as sea severity increases as shown 

in Figure 1-3.  

 

 

 

 

 

Nonlinear Input 

 

UNIOM 

 

Nonlinear Output 
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Figure 2-3 Pitch RAO of a destroyer running head seas of A, B, C (Hs = 6, 9, 11m) vs. 

encounter frequency in non dimensional form. (Dalzell 1962, also available from 

Cummins, 1973). Dotted line indicates the linear theory prediction 

 

Cummins (1973) conducted experiment on the deck wetting per hour of a 

destroyer for high seas and found that experimental values are always lower than linear 

theory as shown in Figure1-4. 

 

 

 

Figure 2-4 Deck wetness per hour of a destroyer (Cummins 1973) 
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 Thus it was clearly observed that vertical ship response in high seas are largely 

affected by sea severity and the linear theory overestimates the response values 

compared to experiment. 

Since these studies were done experimentally it is necessary to extract second 

order responses and find the contribution to the total response for better understanding of 

the problem. Extraction of second order response was done using Volterra quadratic 

model. Barret (1963) gave general input output model using infinite functional series for 

the weakly non linear response. Hasselman (1966) paper gives a broad and detailed idea 

about the second order transfer functions from the nonlinear waves and ship response. 

He showed that the transfer function characterizing the nonlinear response of ships in 

irregular seas can be obtained from high order moments of the ship motion by an 

extension of standard spectral analysis techniques. Even though Hasselman’s quadratic 

model is very much similar to Volterra model he derived it from Taylor’s series. 

Vassilopoulos (1967) showed that Volterra quadratic model can be used for the analysis 

of ship response. Dalzell (1974; 1976) developed the Volterra quadratic model for 

practical uses and applied for the calculation of added resistance in head seas in wave 

tank. Dalzell and Kim (1979) calculated QTFs using hydrodynamic theory for added 

ship resistance and compared the analytical and experimental results. They found that 

both cross bi spectrums are fairly in good agreement. It should be noted that Volterra 

model assumes Gaussian input. So this is applicable to only low sea severities.  Kumar et 

al. (2003) showed that waves are approximately linear below Hs=4m and second order 

up to a significant wave height of 4m and 9m respectively. Even though our study has 
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used Gaussian method for analysis of second order response, the response behavior can 

be easily understood through such an approach. Kim and power (1998) proposed 

Volterra quadratic model with non-Gaussian input output. A detailed study of Volterra 

Gaussian and non-Gaussian method for the calculation of QTF can be seen from 

N.S.Kim and Kim (2004). 

In the second stage of the research, ‘UNIOM-Motion’ was used to predict the 

responses at high seas. Small variations from this approach were already used for the 

calculation of ringing of TLP and the force acting on the cylinder due to impact force by 

Kim.C.H (Kim, 2008). Similar work can be seen from the works of Adil (2004), Richer 

(2005) and Rajith (2006).  

1.3 Objective 

1) The main objective of the study is to reinvestigate the effect of sea severity 

on vertical ship responses due to highly nonlinear seas. The system 

characteristics and responses in high sea condition were checked with that of 

hydrodynamically calculated linear theory so as to find the discrepancy 

between the real responses and responses predicted by theory. 

2) Extract second order transfer function from the total responses using Volterra 

model and check the effect of sea severity on these transfer functions. Second 

order responses were reconstructed from these transfer functions and input 

waves so as to find the contribution of these responses to the total response. 

This greatly helped the better understanding of the system and its response. 
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3) Develop a vertical response prediction model by extending the application of 

UNIOM-diffraction, a semi-empirical model of Volterra quadratic system 

which was developed and applied in previous researches. 
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CHAPTER II 

2 APPROACH AND MATHEMATICAL FORMULATION 

2.1 Classification of sea state 

Wind generated waves were generally classified by code 0 to 9 (Tupper 1996) for 

expressing their sea severity and percentage of occurrence around the globe as listed in 

table 2.1. 

 

Table 2-1 Classification of sea state 

Frequency of occurrence 

Code 
Description of 

sea 
Hs (m) 

Worldwide NorthAtlantic 
NorthernNorth 

Atlantic 

0 Calm (glassy) 0.0 

1 Calm (rippled) 0.00 ∼ 0.10 

2 
Smooth 

(wavelets) 
0.10 ∼ 0.50 

11.2486 8.3103 6.0616 

  3 Slight 0.50 ∼ 1.25 31.6851 28.1996 21.5683 

4 Moderate 1.25 ∼ 2.50 40.1944 42.0273 40.9915 

5 Rough 2.50 ∼ 4.00 12.8005 15.4435 21.2383 

6 Very rough 4.00 ∼ 6.00 3.0253 4.2938 7.0101 

7 High 6.00 ∼ 9.00 0.9263 1.4968 2.6931 

8 Very high 9.00 ∼ 14.00 0.1190 0.2263 0.4346 

9 Phenomenal over 14.00 0.0009 0.0016 0.0035 

 

2.2 Gaussian and Non-Gaussian waves 

It is well known from Fourier series that any periodic signal can be represented 

as the sum of large number of sinusoidal waves. Similarly water waves can be created by 

superimposing large number of sinusoidal waves.  



 9 

 A single sine wave can be represented as 

( ) cos( )t A kx tη ω ε= − +  2-1 

Equation 2-1 shows the time history at a particular location x(t). k is the wave number, ω 

is the circular frequency and ε is any arbitrary phase angle. When we add infinitely many 

sinusoidal waves with different amplitudes, frequency and random phase angle we get a 

random wave or a zero mean Gaussian wave.  

( )
1

( ) cosi i i i

i

x t A k x tω ε
∞

=

= − +∑  2-2 

Where Ai is from the amplitude spectrum which can be obtained by Fourier transforming 

the input waves. 

Crests and troughs of a Gaussian waves are symmetric about the mean level and 

about the vertical axis passing through peak. Because of this property they have general 

statistical characteristics which enable them to distinguish from Non-Gaussian waves. 

Non-Gaussian wave peaks are asymmetrically distributed about mean level and vertical 

axis passing through the peaks. They are generated by addition of higher order waves to 

the linear waves. Higher order waves, e.g. stokes second order wave, always have steep 

peaks and shallow troughs. So when they are added to linear waves it will result in 

asymmetric distribution of peaks about the mean level. It should be noted here we are 

considering the waves in deep water and wave breaking is not taken into account. So 

non-Gaussian waves cannot be created by superimposing the sinusoidal waves since it 

will always end up in Gaussian waves but they can be created in wave tank. 
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2 ( )
i i

A U ω ω= ∆
 2-3 

 

Equation 2-3 describes the method to generate a wave of amplitude Ai with a particular 

frequency ωi. U(ω) is one sided energy spectrum which can be chosen as any standard 

target spectrum e.g. JONSWAP. In a wave tank, the waves of different frequency 

generated from equation 2-3 interact with each other resulting in non-Gaussian waves 

for high sea state.  

Statistical properties like skewness and kurtosis are generally used to identify 

Gaussian and non-Gaussian waves. Skewness is a measure of the vertical symmetry of 

wave and its sign defines the ratio of crest to trough. A positive skewness in the wave 

field shows that crest heights are higher than trough heights. Kurtosis is a measure of the 

degree of peakedness in the distribution and defines the contribution of the big waves. 

For a normal distribution skewness and kurtosis values are respectively 0 and 3. A 

Kurtosis value greater than 3 indicates that the contribution from big waves is 

significant.  

Skewness is the average of (x-µx)
3
 normalized by σx

3
and expressed in the form: 

( ) ( )33

3

3 3 30
1

1 1 1
[ ( ) ]

1

N
T j xx

x

jx x x

xx
E x dt

T N =

−−
− = =

−
∑∫

µµ
µ

σ σ σ  2-4  

The kurtosis is the average of 4( )
x

x − µ  normalized by σ4
x and expressed in the form: 
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( ) ( )44

4

4 4 40
1

1 1 1
[ ( ) ]

1

N
T j xx

x

jx x x

xx
E x dt

T N =

−−
− = =

−
∑∫

µµ
µ

σ σ σ
 2-5 

Where σx, µx are standard deviation of the process x(t) as a function of time and mean of 

the process respectively. 

2.3 Target spectrum 

Parameterized spectrums are generally used to generate waves digitally and 

experimentally depending upon the sea condition. Even though there are large number 

parameterized spectrums are devolved for the last fifty years here we will mainly talk 

about two spectrums which were used for the generation of waves in tanks for this study. 

2.3.1 ITTC spectrum 

 

Given the significant wave height and characteristic period, one can calculate the 

energy spectrum using the formula  

2 4 4

1 15 4
( ) exp , 173 , 691s

A B
U A H T B Tω

ω ω
− − 

= − = = 
 

 2-6 

Significant wave height (Hs) is the average of highest one third waves and characteristic 

period T1 is the average period derived from average frequency of the component waves. 

These are basically used for the generation of sea conditions of average height. 

2.3.2 JONSWAP spectrum 

 

JONSWAP spectrum is a three parameter spectrum with variables significant 

wave height (Hs), peak period (Tp) and peakedness parameter (γ). They have the 

advantage that they can represent high sea states using peakedness (γ) parameter which 
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ranges from 1 to 7 depending upon the sea state. High laboratory waves generated from 

this spectrum are non Gaussian in nature and hence can be used to study the effect of 

high seas on the ships. Waves simulated digitally from the JONSWAP are Gaussian 

waves since the spectrum doesn’t carry any phase information.  

JONSWAP spectrum can be derived from the following equation 

2

2 2

( )4 exp
22 4 55

( ) exp 1.25 (1 0.287ln )
16

m

mm

s mU H

 −
− 

−   
  

= − −  
   

ω ω

σ ωω
ω ω ω γ γ

ω
 2-7 

Where  

0.07 for

0.09 for

m

m

ω ω
σ

ω ω

≤
= 

>
 2-8 

ωm is the model frequency derived from the model period of frequency spectrum which 

in turn is derived from peak period of the period spectrum by the following equation  

Tp =0.880 Tm 2-9 

2.4 Rayleigh distribution 

A random process is said to be stationary if the statistics of the samples does not 

depend on the absolute time of measurement. A random process is said to be 

homogeneous if the statistics of the samples does not depend upon the space or the place 

of measurement. A process which is both homogenous and stationary is called as ergodic 

process. An ergodic random process is said to be narrow banded if the energy is 

distributed between a finite limited ranges of frequency. Water waves are considered to 

be narrow banded since their energy always lies in a finite frequency band.  For narrow 
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banded zero mean Gaussian process it can be shown that probability for a wave crest to 

exceed a given peak value ‘a’  is  

{ }
2

0

Pr peaks > exp
2

a
a

m

 
= − 

 
 2-10 

 

Where m0 is variance of the waves or the area under the energy spectrum which can be 

found out from the following equation 

( ) ( )222 2

0
0

1

1 1
[( ) ]

1

N
T

x x x j x

j

m E x x dt x
T N

σ µ µ µ
=

= = − = − = −
− ∑∫  2-11 

µx and σx are the mean and standard deviation of the wave time history x(t). 

Equation 2-10 is called as Rayleigh probability distribution exceeding ‘a’. This 

equation can be used to identify the nonlinearity of the waves. Peaks from a narrow 

banded Gaussian will always follow the Rayleigh distribution curve since they are 

narrow banded. Deviation from the Rayleigh distribution of peak shows that the crests or 

troughs are asymmetrically distributed about the mean level and hence the process is non 

Gaussian.  

2.5 Most probable peak value 

Rayleigh Cumulative probability (peaks < a) can be derived from equation 2-10  

( ) { }
2

0

Pr peaks 1 exp
2

a
P a a

m

 
= ≤ = − − 

 
 2-12 

If we assume N observations, probability of maximum peak value occurrence is  

 
2

0

1/ 1 exp
2

N
a

N
m

 
= − − 

 
  2-13 
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Therefore most probable peak value in N observation is   

 

0
ˆ  2 lnNa N m=  2-14 

N is number of zero crossings during the time interval ‘T’ sec. 

 
z

T
N

T
=  2-15 

Tz is the zero crossing period which can be calculated as follows 

0

2

2z

m
T

m
π=  2-16 

Where m2 is the second moment of the one sided spectrum Uxx(ω) 

2

2
0

( )
xx

m U dω ω ω
∞

= ∫  2-17 

2.6 Volterra Quadratic Model 

Volterra Model is a system identification method generally used in signal 

processing techniques. Methods for analyzing ship responses in irregular seas were 

developed by Hasselman(1966) and Dalzell(1976) as discussed in Background. 

2.7 Volterra Model in time domain 

Volterra Model assumes that input is zero mean Gaussian process and the system 

consists of both linear and quadratic part. Depending on whether the system is linear or 

quadratic, response will also be linear or quadratic respectively. Volterra Model can be 

expressed in time domain as follows  
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1 1 1 2 1 2 1 2 1 2( ) ( ) ( ) ( , ) ( ) ( )y t g x t d g x t x t d dτ τ τ τ τ τ τ τ τ
∞ ∞ ∞

−∞ −∞ −∞
= − + − −∫ ∫ ∫  2-18 

g1 (τ1) is the Linear Impulse Response (LIR) function at time t=τ1 and g2 is quadratic 

Impulse response (QIR) function which is function of both τ1 & τ2. g2 is time invariant 

since they are function of time lag τ1 and τ2 only. 

Convolution of input wave with LIR gives the linear response and the 

convolution of a monochromatic input wave with another monochromatic input wave 

and QIR give quadratic response. 

2.8 Volterra Liner Model in frequency domain 

Using Fourier transforms Volterra Model can be expressed in frequency domain 

which makes it easier to handle.  

If x(t) is input and g(t) is the impulse response due to unit impulse then total response 

can be written as 

( ) ( ) ( ) *  y t x t g t=
 2-19 

if x(t)= δ(t) i.e. unit impulse input 

then y(t)=g(t) 

applying Fourier transform on the output 

( ) ( ) ( )i t i t
Y y t e dt g t e dt

ω ωω
∞ ∞− −

−∞ −∞
= =∫ ∫  2-20 

Similarly applying Fourier transform on the input 

 

( ) ( ) ( ) 1i t i t
X x t e dt t e dt

ω ωω δ
∞ ∞− −

−∞ −∞
= = =∫ ∫  2-21 

 

Linear transfer function LTF can be defined as the ratio between output and input  
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LTF = G1(ω) = Y(ω)/ X(ω) 2-22 
 

Inverse Fourier transforming the LTF we will get IRF. 

 

2.9 Relationship between linear response and LTF 

A bi-frequency wave can written as sum of two sinusoidal waves 

 

1 1 1 2 2 2( ) ( )cos( ) ( )cos( )                                 x t a t a tω ω ω ω= +  2-23 

1 21 1 2 2
1 2( )( ) ( )( )                                 

2 2

a ai t i t i t i t
e e e e

ω ω ω ω
ω ω

− −
= + + +  2-24 

( ) ( )

( ) ( )

1 1 1

( ( ) ( ( ) ( ( ) ( ( )1 21 1 1 1 2 2 2 2
1 1

1 21 11 1 11 2 2 2 2 2 2
1 1

( ) ( ) ( )
1

( )
2 2

( )
2 2

i t t i t t i t t i t t

i t i t i t i t i t i t i t i t

y t g t x t t dt

a a
g t e e e e dt

a a
g t e e e e e e e e dt

ω ω ω ω

ω ω ω ω ω ω ω ω

− − − − − −

− − − −

+∞
= −∫

−∞

+∞  = + + +∫  −∞  

+∞  = + + +∫  −∞    
 

1 11 11 1 11
1 1 1 1

2 22 2 2 2 2 2
1 1 1 1

1 1 2 21 1 2 2
1 1 1 1 2 2 2

( ) ( )
2 2

( ) ( )
2 2

( ) ( ) ( )
2 2 2 2

i t i t i t i t

i t i t i t i t

i t i t i t i t

a a
g t e e dt g t e e dt

a a
g t e e dt g t e e dt

a a a a
e G e G e G e G

ω ω ω ω

ω ω ω ω

ω ω ω ωω ω ω

− −

− −

− −

+∞ +∞   = +∫ ∫   −∞ −∞   

+∞ +∞   + +∫ ∫   −∞ −∞   

= + − + − + 2( )              ω

 2-25 
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( )( ( ) ( ( )
1 2

1 1 1 2 2 2( ) Re ( ) ( )
1

i t i t
y t a e G a e G

ω ωω ω= +  2-26 

2.10 Extraction of LTF from the cross and auto spectra 

So far we saw the relationship between LTF and linear response. Now we’ve to 

employ a method to extract the LTF for the purpose of our study. We employed the 

commonly used spectra method for the calculation for which the derivation is given 

below. 

Volterra model assumes that input is Gaussian. Auto correlation between the 

inputs and Cross correlation between the input and output can be written as  

( ) [ ( ) ( )]

( ) [ ( ) ( )]

xx

xy

R E x t x t

R E x t y t

τ τ

τ τ

= −

= −
 2-27 

From equation 2-18 we have the linear part of response as 

 

1 1 1 1( ) ( ) ( )y t g x t dτ τ τ
∞

−∞
= −∫  2-28 

 

( )

1 1 1 1

1 1 1 1

1 1 1 1

( ) [ ( ) ( )] [ ( ) ( ) ( ) ] 

= ( ) [ ( ) ( )]  

= ( )

xy

xx

R E x t y t E x t g x t d

g E x t x t d

g R d

τ τ τ τ τ τ

τ τ τ τ

τ τ τ τ

∞

−∞

∞

−∞

∞

−∞

= − = − −

− −

−

∫

∫

∫

 2-29 

 

Applying Fourier transform on both sides  

 

1( )
xy xx

S G Sω=  2-30 

Where Sxx & Sxy are the two sided auto and cross spectrum and can be calculated using 

either generally used Fourier transform method or Blackman-turkey maximum lag 



 18 

method. This equation can also be written in terms of one sided cross (Uxy) and auto 

(Uxx) spectrum as follows 

1( )
xy xx

U G Uω=  2-31 

2.11 Volterra Quadratic Model in frequency domain 

In the previous sections we considered monochromatic waves interacting with 

the system producing the linear response. But as the sea state increases these 

monochromatic waves of different frequencies interact with each other and give rise to 

non linear responses. When two frequencies interact with each other they produce a 

quadratic effect on the system e.g. slow drift motion of the vessel. For this particular 

study we need to employ Volterra Quadratic Model which is widely used in electrical 

engineering for signal processing.  

Equation 2-18 gives the Volterra Quadratic model in time domain. Here we used 

Volterra model in frequency domain developed by Hasselman (1966) and Dalzell (1976) 

after some manipulation of the equation in time domain. Similar to equation 2-20 and  

2-21, Quadratic Transfer Function (QTF) in frequency domain are derived from the 

Fourier transform of Quadratic Impulse Response Function (QIF) in time domain. On 

inverse Fourier transform we can get QIF from QTF. 

1 1 2 2

2 1 2 2 1 2 1 2( , ) ( , ) i i
G g e d d

∞ ∞ − −

−∞ −∞
= ∫ ∫

ω τ ω τω ω τ τ τ τ  2-32 

2 1 2 2 2 1( , ) ( , )g gτ τ τ τ=  2-33    

Where 2 1 2( , )g τ τ is the QIF for the time lag τ1& τ 2 and are assumed to be symmetrical in 

its arguments which can be shown as 



 19 

2 1 2( , )G ω ω  is the QTF when two waves of two frequencies ω1 & ω2 interact with each 

other. 

Similar to QIF, QTF follows the symmetrical relationship in its domain ω1 & ω2 

which can be shown as  

2 1 2 2 2 1

*

2 1 2 2 1 2 2 2 1

( , ) ( , )

( , ) ( , ) ( , )

G G

G G G

ω ω ω ω

ω ω ω ω ω ω

=

= − − = − −
 2-33 

It is our objective to extract these frequency components from the given response and 

study the behavior. For a quadratic system we have 

2 2 1 2 1 2 1 2( ) ( , ) ( ) ( )y t g t t x t t x t t dt dt
+∞+∞

= − −∫ ∫
−∞−∞

 2-34 

( ( ) ( ( )1 1 1 1 1

( ( ) ( ( )2 2 1 2 1

2 2 1 2 1 2

( ( ) ( ( )1 1 2 1 2

( ( ) ( ( )2 2 2 2 2

( )
2

( )
2

( , )

( )
2

( )
2

i t t i t t

i t t i t t

i t t i t t

i t t i t t

a
e e

a
e e

y g t t dt dt
a

e e

a
e e

ω ω

ω ω

ω ω

ω ω

− − −

− − −

− − −

− − −

  + +  
  
  ++∞ +∞    

= ∫ ∫  
−∞ −∞   + +  

  
  +
   

 2-35 
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using symmetry relations from equation (2.34) .
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Total response (y) can be written as a sum of linear response (y1) and quadratic response 

(y2). 
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This relation is well expressed through the following diagram. Here frequencies ω1 & ω2 

plotted on the x and y axes are interacting with each other in their particular domain. 

 

 

2 ( , )G a b

( , )b a− ( , )b a

( , )a b− ( , )a b

( , )b a− −

( , )a b−

2ω+

2ω−

1ω−
1ω+

1

2

ω

ω

−=

1

2

ω
ω

=

2 ( , )G a b−

*
2 2( , ) ( , )G b a G a b− = −*

2 2( , ) ( , )G b a G a b− − =

*
2 2( , ) ( , )G a b G a b− − =

*
2 2( , ) ( , )G a b G a b− = −

2 2( , ) ( , )G b a G a b− = − 2 2( , ) ( , )G b a G a b=

( , )a b− −

( , )b a−

 
 

Figure 2-1 Diagram showing the symmetry of quadratic transfer functions 
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Diagonal lines passing through each quadrant result from the interaction of 

frequencies of same absolute value. Diagonal in the first quadrant results from the 

interaction of positive ω1 & ω2 which is equivalent to double frequency responses. 

Diagonal on the fourth quadrant which results from the interaction of ω1 & -ω2 gives rise 

to zero frequency response. The major axis and diagonals divide the diagram into octants 

where we can apply the symmetry. Applying equation 2-27 we can limit our area of 

study to the quadrant between the axis  ω1 = ω2 & ω1 = | -ω2 | which is better explained 

from the below diagram 
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Figure 2-2 Transformation of axis from 1 2 1 2,  to ,ω ω Ω Ω  

 

Here Ω1 & Ω2 are the zero and double frequency axis as discussed earlier. The domain 

between Ω1 & ω1 represent the difference frequency components of the response while 
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domain between Ω2 & ω1 represent the sum frequency component. Therefore 

bichromatic wave interaction give rise to six different frequency component i.e two 

individual frequency part or the linear part, mean frequency or zero frequency 

component, double frequency component, difference frequency and sum frequency 

parts. 

2.12 Extraction of QTF from cross bi spectra 

In the case of linear response we saw cross correlation of the input wave with 

response.  Here as we are talking about second order effect, wave-wave interaction and 

their respective responses becomes important. Like cross correlation of wave-response 

here we will make use of third moment which is correlation between wave-wave-

response. 

1 2 2 1( , ) [ ( ) ( )( ( ) [ ( )])]xxyM E x t x t y t E y tτ τ τ τ= + + −  2-41 

 Tick (1961) showed that double Fourier transform of the third moment gives cross bi 

spectrum 

1 1 2 2( )

1 2 1 2 1 22

1
( , ) ( , )

(2 )

i

xxyCBS e M d d
τ ω τ ωω ω τ τ τ τ

π

∞ ∞ − +

−∞ −∞
= ∫ ∫  2-42 

Dalzell (1972) rearranged the equation with a new starting point by defining third 

moment as 

1 2 1 1 2 2( , ) [ ( ) ( )( ( ) [ ( )])]xxyM E x t x t y t E y tτ τ τ τ τ τ= + − − − −  2-43 

 

Since output is assumed to be Gaussian 2[ ( )] 0E y t τ− =  

 

From equation 2-18 we know that 
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For a Gaussian input 
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[ ] [ ]2 1 2 1 2 1 22 1 1 1 2 1 2 2 2 1 2( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( )xxty t E y t g t x t t d g t t x t t x t t R t t dt dtτ τ τ τ τ+
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From equation 2-44 

1 2 1 1 2 2( , ) [ ( ) ( )( ( ) [ ( )])]xxyM E x t x t y t E y tτ τ τ τ τ τ= + − − − −  
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Since temporal average of triple product is zero, first term of the equation becomes zero. 

Using the property  
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 Since auto correlation is an even function we can rewrite the equation as 
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Since 2 1 2( , )g t t  is symmetric and the integration limits in between the infinity the terms 

inside the square bracket are same 

( )1 2 2 1 2 1 2 1 1 2 2 1 2( , ) 2 ( ) ( )( , )
xxy xx xx

M R t R tg t t dt dtτ τ τ τ τ τ= + + − −
+∞+∞
∫ ∫

−∞−∞  2-50 

According to Parseval’s formula used by Barret (1963)  
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Where * represent the complex conjugate and f1, F1 are the Fourier transform pairs 

defined as follows 
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Here 1 1 2 2 1 2( , ) ( , )F Gω ω ω ω= , 1 1 2 2 1 2( , ) ( , )f t t g t t= , 2 1 2 1 2 1 1 2 2( , ) ( ) ( )
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For an easy understanding of the problem the axis is transformed from  

 

1 2 1 2( , ) to ( , )ω ω Ω Ω  as discussed above. Applying Jacobian coordinate transform  

 

1 2 1 2
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2
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By modifying the equation 2-43 & 2-44 it can be seen that cross bi spectrum is the  
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double fourier transform of third moment 

1 1 2 2( )

1 2 1 2 1 2( , ) ( , )
i

xxyCBS e M d d
τ ω τ ωω ω τ τ τ τ

∞ ∞ − +

−∞ −∞
= ∫ ∫  2-57 

 

On inverse Fourier transforming we’ll have 
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Comparing equation (2.56) & (2.58)  
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Rewriting the equation  
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ω ω
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It was seen that at the tails of auto spectrum 1 2( ), ( )
xx xx

S Sω ω where the values are really 

small causes abnormally high values in *

2 1 2( , )G ω ω . In order to avoid the uncertainty in 

the estimation, Kim and Kim (2004) proposed a nominal rule to take the spectral 

densities at the tails to be 10% of the peak energy spectral density. This is shown in the 

following diagram Figure 2-3. 
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Figure 2-3 Selection of values greater than 10% of peak energy density spectrum 

2.13 Algorithm for calculation of cross-bi spectrum 

Algorithm for cross bi spectrum was developed by applying Blackman-Turkey 

method in two dimensionsal way. Dalzell(1974) referred to shaman(1963) for the 

calculation of the algorithm using hamming window with Blackman-Turkey method. 
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where
ˆ̂

C  = estimate of cross-bi spectrum 

1 1 /P m tπΩ = ∆ , 2 2 /P n tπΩ = ∆ , 

 m = maximum lags in the difference frequency (Ω1)  
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n = sum frequency direction (Ω2).  

Maximum lag was calculated using the equation given by Kinsman (1965, pp.449) 

1
2

4

N
df

m

 
= − 

 
 2-62 

Where df is the degree of freedom and a nominal value of 50 to 60 not exceeding 100 is 

taken as per Kinsman.  

N= number of datas 

e1 = 0.54 and e2 = 0.46 with a discrete version of the scalar spectrum lag window 

(Hamming window); 

r( j) = 1 for j = 0 and r( j) = 2 for otherwise; 

 

x(N) = the input time series corrected to zero sample mean; 

 

y(N) = the output time series;  

 

Ns = the number of possible products summed; 

 

∆t = sampling interval used  

 

2.14 Reconstruction test 

So far we discussed the methods to extract QTF from the given response and 

input waves. It was necessary to check the accuracy of these methods used for the 

calculation of QTFs. This was carried out by conducting the reconstruction test in which 

the response time series were reconstructed using corresponding QTFs and input waves 

and were compared with original response time series. Reconstruction test was done 

using equation 2-41 which can be written in a concise form as shown below 
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Nomenclature of the above equation is same as discussed in the previous section i.e. y(t) 

is the total response, y1 (t) is the linear response and y2 (t) is the second order response. 

G1 (ωm) is LTFs calculated as per Volterra linear model with N observed data points .  

G1(ωj,ωk) is QTFs calculated for a combination of frequency ωj and ωk . Aj, Ak and εj, εk  

are amplitudes and phase angles at ωj and ωk respectively. The reconstructed response 

series was compared with measured response and the correctness of the method was 

checked and this is better explained through the below diagram 

 

Nonlinear 
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Estimaition of LTF & 
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Nonlinear 

measured output 

  ↓  ⇑ 

  Estimated LTF & QTF  Comparison 

  ↓  ⇓ 

Nonlinear 

measured input 
→ 

Volterra quadratic 

Theoretical model 
→ 

Reconstructed 

Nonlinear output 

 

Figure 2-4 Schematic diagram showing the reconstruction of response 

 

2.15 Comparison of energy spectrum of the reconstructed and measured response  

Energy spectrum of the reconstructed response time series was calculated using 

conventional Fourier transform method and was compared with energy spectrum of the 

measured response. This approach was a useful eye check for understanding the 

contribution of first and second order response to the total response. This also helped to 

check the presence of any higher order term in the measured response. 
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2.16 Coherency test 

Bendat (1990) defined coherency of first and second order response by the 

following equation 

1 12
( )

( )
( )

y y

xy

yy

U

U

ω
γ ω

ω
=  2-64 

2 22
( )

( )
( )

y y

xy

yy

U
q

U

ω
ω

ω
=  2-65 

 

Where the suffixes y1, y2 represent the reconstructed linear and quadratic output, 

respectively while y is the measured response. γ
2
 and q

2 
represent the linear and 

quadratic coherence functions respectively . Uy1y1, Uy2y2 indicates one sided spectra of 

linear and second order response. The sum of the coherency function should lie between 

0 and 1. A goodness-of-fit measure for the validity of the quadratic nonlinear model can 

be found by seeing how close the sum of these linear and quadratic coherence functions 

is to unity (Bendat, 1990). This helps in to check the presence of any higher order term 

in the response.  
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CHAPTER III 

3 EXPERIMENTAL SETUP 

3.1 Experimental study of ITTC model at TAMU 

It is our research plan to do a model study to reconfirm the results by Dalzell and 

Cummins. The experiment will be for measurement of the vertical response of a moored 

ITTC container ship S175 in head seas of varying severity. The analyses will involve 

estimates of LTFs based on Linear Volterra model and the results will be compared with 

linear theory. It is expected that the estimated vertical responses will decrease as the sea 

severity increases and linear theory will over estimate the experimental result. 

Afore mentioned ITTC model was tested in the four varying irregular seas by 

Prof. Sun Hong Kwon at Pusan National University, whose data were transferred to 

Texas A & M University for carrying out an in-depth analysis. The model was moored 

by four soft lines at the head seas. The vertical motions were carefully measured using a 

specially designed conducts. The model was installed as shown in the below Figure 3-1. 
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Figure 3-1 View of the model installing area 

 

3.2 Data of ship hull 

The body plan (transferred data) shows 20 stations with two half stations at either 

ends. The ship principal particulars are as given in Table 3-1. The stations marked on the 

hull in the model were used for measuring the vertical motion including relative 

motions.  
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Table 3-1 Principal particulars 

 

 

Designation Unit Ship 

Scale - 70.0 

Length between perpendicular M 175.0 

Breath moulded M 25.4 

Draft mean M 9.5 

Displacement m
3
 24119 

Wetted surface area m
2
 5500 

Block coefficient - 0.5717 

Waterplane area coefficient - 0.7108 

Longitudinal center of gravity 

(AFT from Midship) 

M 2.48 

Vertical Center of Gravity 

(above Base Line) 

M 9.52 

Transverse Metacentric Height M 1.0 

Radii of Gyration. Pitch and Yaw M 202 

Radius of Gyration Roll M 42 

Roll Natural Period - 0.382B 

 Sec 18.28 
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Table 3.1. Principal particulars continued 

Designation Unit Ship 

Propeller  KP452 

Diameter M 6.5 

Number of blades  5 

Pitch M 6.875 

Pitch Ratio - 1.055 

Expanded Area Ratio - 0.73 

Hub ratio - 0.1846 

 - 0.1846 

Appendage   

Rudder  

NACA001

8 

Bilge Keel   

Length  0.25L 

Maximum breadth M 0.45 

 

3.3 Heave resonance frequency 

The heave resonance frequency of the ITTC ship is estimated approximately 

0.801 rad/sec (period 7.84 sec) by using an approximate formula given below. 
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Assuming that damping is negligible and ship’s mass is approximately equal to its 

heaving added mass one may have an approximate natural frequency 

)2/(3 swp MgAρω =  

3.4 Particulars of the waves 

            The current study employed the KRISO data (Korea research institute of ships 

and ocean engineering). KRISO waves were generated using target spectra ITTC and 

JONSWAP spectra in the year 2000. The particulars of the waves of varying sea severity 

are given in Table 3-2, where Hs denotes significant wave height, Tp denotes modal or 

peak period and gamma represents the peakedness of the spectra. It can be seen from 

Table 2-1 that first two sea states (Hs=4.5m & 6.5m) belong to very rough and high seas 

classification respectively while the last two sea states of Hs=10.0m & 12.2m belong to 

very high seas. 

 

Table 3-2 Particulars of KRISO waves (2000) 

Proto Model Data  

No. Hs(m) Tp Hs(m) Tp 

γγγγ  Remarks 

#1 4.5 11.26 0.064 1.519 1.0 ITTC 

#2 6.5 12.09 0.092 1.630 1.5 JONSWAP 

#3 10.0 12.73 0.143 1.717 2.5 JONSWAP 

#4 12.2 13.37 0.174 1.803 2.5 JONSWAP 
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In dealing with the wave, Froude similitude law is applied:  

gLVFn /=  3-1 

Where V and L are the characteristic velocity and length of the ship and g is gravity 

constant 

mod
/

el prototype
Hs Hs λ=  3-2 

 
2/1

mod / λ=prototypeel TpTp  3-3 

 

Where λ  is length scale factor. 

3.5 Measured wave time series 

The input waves were generated using the target spectra as defined in the 

particulars of the KRISO waves in Table 3-2. The wave time series are shown in Figure 

3-2 to Figure 3-5. This input data causes the response motions of the structure. Thus it is 

important to investigate the qualities and severities of the waves. Firstly we examined 

the qualities of the generated waves with the measured target spectra and then examined 

the nonlinearities (sea severity) by applying the probability of exceedence of the crest 

height. 

 
Figure 3-2 Input wave time series Hs=4.5m 
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Figure 3-3 Input wave time series Hs=6.5m 

 

 

Figure 3-4  Input wave time series Hs=10.0m 

 
Figure 3-5 Input wave time series Hs=12.2m 

 

3.6 Statistics of waves 

As a preliminary investigation, statistics of the waves were studied by calculating 

the mean, variance, skewness and kurtosis values as given table below. 
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Table 3-3 Statistics of wave motion for different sea state 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Mean 9.57 x 10^-017 -6.75 x 10^-017 8.04 x 10^-017 -3.41e-017 

Std deviation 1.5296 2.3609 3.7953 4.6404 

Skewness 0.1001 0.2527 0.2743 0.2955 

Kurtosis 3.2070 3.3969 3.4180 3.2420 

 

 

Mean values were found to be negligible. Skewness value indicates the 

asymmetry in the distribution of crests and troughs about mean value. Skewness 

increases as sea state increases indicating increase in nonlinearity for higher seas. It was 

seen from Table 3-3 that skewness values increases rapidly from Hs=4.5m to Hs=6.5m 

after which it increase gradually through higher sea states. Kurtosis value is zero for 

Gaussian distribution. Kurtosis value greater than 3 shows that the wave peakedness is 

higher than Gaussian distributed waves i.e. there more chance of bigger waves compared 

to normally distributed linear waves. Non linearity was cross checked by comparing the 

peaks with Rayleigh distributed peaks in the following section. 

3.7 Comparison of measured and target spectrum 

The time series above represent wave elevations in proto scale, which are 

subjected to FFT transform and smoothened to get the smooth energy density spectra. 

Thus we have measured and target spectrums for each sea as shown in Fig. 3.6. It was 

observed that visually both spectra match very well. However, the foregoing observation 
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is an eye-view approach. Thus, we need to take account of it in the statistical terms. The 

variation in the variances between the measured and target spectrum for each sea is 

computed. Comparison of the variance shows the error to be less than 10% error, which 

is generally accepted criteria, as shown in Table 3-4. This indicates that the qualities of 

the measured waves are acceptable. 

Input wave frequency range generally lies in between 0.35 to 1.5 for all the 

waves.  It was observed that waves created in wave tank using target spectrum are non 

linear in high seas. This was verified from the following results where probability of 

exceedence for the wave crest height was compared with Rayleigh distributed curve.  

 

Table 3-4  Comparison of variance between measured vs target spectrum 

 

 

Prototype Hs 

Measured spectrum 

Variance 

Target spectrum 

Variance 

% 

error 

Wave no 1 4.5m 0.7077 0.7647 7.45 

Wave no 2 6.5m 1.6861 1.8346 8.09 

Wave no 3 10.0m 4.3572 4.1063 6.11 

Wave no 4 12.2m 6.5139 7.075 7.93 
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Figure 3-6 Comparison of measured and target wave spectrum 
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3.8 Investigation of nonlinearity of measured wave 

Here, we investigated the degree of nonlinearity of waves or sea severity of each 

sea.  As discussed in the previous chapter, the crest heights of narrow banded Gaussian 

process follow Rayleigh distribution. This proved to be one of the efficient methods for 

checking the non linearity of the waves. Non linearity was checked using equation 2-10 

by comparing the probability of the crest height distributed in the given sea that exceeds 

a given crest peak. 

      The probability of exceedence of the linear (Gaussian) sea and those of the real 

measured waves are compared as shown in Figure 3-6. The comparison of the linear 

(Gaussian) theory and experiment of the crest height evidently indicates the nonlinearity 

of the measured wave if the measured points deviate from the linear line. It was found 

that as the sea severity increases from Hs= 4.5 m to 12.2 m the wave nonlinearity 

increases gradually. 
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Figure 3-7 Probability of exceedence for input wave crest height 
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CHAPTER IV 

4 RESULTS OF STUDY ON LTF 

4.1 Measured heave response  

Heave response time series from the experiment was plotted as shown from 

Figure 4-1 to Figure 4-4 for different seas from Hs=4.5 to 12.2m. As a preliminary 

investigation, statistics of the responses were estimated. Mean, variance, kurtosis and 

skewness of the heave responses were calculated as in Table 4-1. As discussed in the 

previous chapter Skewness is a measure of the statistical symmetry of the wave elevation 

about the mean level. Kurtosis gives idea about peakedness of the data compared with 

normal distribution. 

 

Table 4-1 Statistics of heave motion for different sea state 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Mean -2.13 x 10^-17  -3.43 x 10^-17 6.29 x 10^-17 2.75 x 10^-016 

Variance 0.1701 0.5144 1.5230  2.8711 

Skewness -0.0015 0.0658 0.1029 0.1596 

Kurtosis 2.9298 2.9232 2.9050 2.9120 

 

 

Mean values of heave responses are practically zero. Zero Skewness represents 

Gaussian waves with symmetric distribution of crest and trough peaks around mean 

values. In our analysis Skewness values were found to be small positive values 

indicating that heave response is asymmetric about the mean value and crest peaks are 
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slightly larger than trough peaks. Skewness values increases as the sea state increases 

which is an indication of increase in nonlinearity in higher seas. Kurtosis for Gaussian 

waves is found to be 3. Kurtosis values deviates from 3 as the sea state increases.  

 

 

Figure 4-1 Heave motion time series (Hs=4.5m) 

  
Figure 4-2 Heave motion time series (Hs=6.5m) 

 

 
Figure 4-3 Heave motion time series (Hs=10m) 
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Figure 4-4 Heave motion time series (Hs=12.2m) 
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4.2 Heave auto and cross spectrum 

 
Figure 4-5 Heave motion auto and cross spectrum 
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4.3 Nonlinearity of heave motion       

In Figure 4-6 , we compared the probability of exceedence for heave response 

(positive elevation) to the linear Rayleigh curve. It shows that the probability of the 

exceedence follows the linear curve for waves #1 and #2 indicating the heave response is 

linear in these seas. In the waves #3 and #4 the experimental heave data slightly deviates 

from the linear curve indicating slightly nonlinear heave. However the heaves in all the 

seas may be regarded practically linear. 

 

 

Figure 4-6 Heave motion probabililty of exceedence  
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Figure 4-6 (continued) 

 

4.4 Heave LTF 

We estimated the heave auto and cross spectrum as shown in Figure 4-5. Heave 

LTFs were determined by applying Volterra linear model using Equation 2-30 . It was 

observed that heave cross and power spectrum for different seas holds a valid range for a 

frequency range 0.35 to 0.9 rad/sec which is equivalent to non dimensional frequency 

range 1.5 to 3.8 and ship to wave length ratio of 0.35 to 2.5. Even though a clear 

distinction between linear and higher order frequency range was not easy from the 

experimental values, we assumed that frequency range of heave spectrum as seen from 

Figure 4-5 is solely due to linear input wave. This frequency range was checked during 

the calculation of second order part and their reconstruction in the later stage of the 
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research and found that second order frequency lies out of this assumed linear frequency 

range. The LTFs are plotted for different seas as shown in Figure 4-7.   

Heave resonance frequency was estimated approximately 0.801 rad/sec as per 

equation.3-1 The humps at frequency 0.83 rad/sec represent heave resonance as 

observed in Figure 4-7. 

Even though LTF for different sea states behaves almost the same way outside 

natural frequency range, it was evidently seen that LTF decreases as the sea states 

increase for a frequency range close to natural frequency, i.e. frequency range 0.65 to 0.9 

rad/sec. This result is similar to Dalzell.et.al (1973) conclusion regarding pitch motion 

LTF of destroyer. Phase angle also varies for different sea state and lags behind as the 

sea state increases around natural frequency. 
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Figure 4-7  Heave motion LTF, phase angle 

 

4.5 Comparison of theoretical and experimental LTF 

From the foregoing discussions regarding the nonlinearity of input waves and 

heave response, we saw that input waves were dominantly nonlinear in nature for sea 

states higher than Hs=4.5m and nonlinearity increases gradually as it goes to higher sea 

states. Heave responses were almost linear in nature especially for the first two sea states 

and their peak values followed Rayleigh distribution curve. Since theoretical LTF 

calculation method assume Gaussian input, difference in the values of experimental and 

theoretical LTF was expected and noticed for higher sea states especially for the last two 
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responses due to input waves of Hs=10.0m & 12.2m Figure 4-8 shows the comparison 

between theoretical and experimental LTFs. It is clear from the figure that theoretical 

LTF value is higher than experimental LTF for the sea states Hs=10.0m and 12.2 m. 

Differences between them are large around natural frequency and are close to 25 % more 

for 10.0m wave and 50% more for 12.2m wave. Experimental LTF for Hs=4.5m and 

6.5m almost follows the experimental LTF. It is conventional to apply theoretical LTF in 

the design of offshore structures. This leads to higher loads resulting in heavy structure. 

 

 

Figure 4-8 Comparison of theoretical and experimental LTF  
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Figure 4-8 (continued) 

 

Similarly phase angles of LTF from linear theory and experiment were compared 

as shown in Figure 4-9. Theory at low frequency has to be in phase with the measured 

wave. But measured sea condition shows phase lead about 10 degrees at the low 

frequency and continue the tendency as the frequency increases. It was observed that 

phase angles of both experimental and theoretical LTF follows the same trend and phase 

angle of LTF from experiment lags behind theoretical LTF. 
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Figure 4-9 Comparison of LTF phase angles from theory and experiment 

 

4.6 Heave peaks of experiment and theory 

The most probable peak response of Gaussian process is given by equation 2-14 

We compared the peak values of heave obtained by the linear theory and experiment at 

each sea is shown in Figure 4-10. Theory assumes Gaussian seas and theoretical linear 

response LTFs and employs the most probable peak as given in the above.  

 

Table 4-2 Heave peak value comparison between experiment and theory 

 

Significant wave 

height(m) 

Peak value 

(experiment) 

Peak value 

(theory) 

% error 

4.5 1.2451 1.1788 5.53 

6.5 2.0298 2.8964 42.69 

10.0 3.6516 5.0411 38.05 

12.2 4.9728 6.5252 31.22 
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Figure 4-10 Heave motion peak values 

 

It is clear from Figure 4-10 that there is a general trend for linear theory to over 

estimate the peak values as the sea severity increases. For the responses corresponding to 

lowest sea (Hs=4.5m) experimental peak value is 5.5% more than theory. For the second 

response due to input wave of Hs=6.5m we saw that experimental LTF does not vary 

from theoretical LTF and the system is almost linear. Still the large difference in the 

peak values can be attributed to the nonlinearity of the input wave which we investigated 

in Figure 3-3. For the last two responses both the input waves and system were found to 

be non linear. Peak values from linear theory do not match the experimental peak values.  
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4.7 Pitch motion time series 

Pitch motion time series are plotted as shown in Figs. 4.10 to Fig.4.13. Similar to 

heave response the mean, variance, skewness and kurtosis were calculated and are 

shown in below table. 

 

Table 4-3 Statistics of pitch motion for different sea state 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Mean 9.12 x 10^-17 -2.14 x 10^-17 5.37 x 10^-17 -9.79 x 10^-17 

Std deviation 0.7760 1.2972 2.0927 2.5687 

Skewness 0.0849 0.1699 0.2577 0.2733 

Kurtosis 3.0901 3.1839 3.1575 3.0640 

 

 

Mean values are very small and practically equals to zero. As discussed before 

skewness of pitch motion shows the non Gaussian behavior. Pitch motion peaks are 

asymmetrically distributed about the mean value and crest peak heights are larger than 

trough peak heights. Skewness values increase as the sea state increases and are higher 

than heave motion. It was inferred from the above observation that nonlinearity involved 

in pitch motion is higher than heave motion.  

Kurtosis values are greater than 3. Therefore it can be assumed that wave peaks 

are bigger than Gaussian waves. 
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Figure 4-11 Pitch motion time series (Hs=4.5m) 

 

 
Figure 4-12 Pitch motion time series (Hs=6.5m) 

 

 

Figure 4-13 Pitch motion time series (Hs=10.0m) 
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Figure 4-14 Pitch motion time series (Hs=12.2m) 
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Figure 4-15 Pitch auto and cross spectrum 
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4.8 Pitch LTFs 

Above data in Figure 4-15 are used to estimate pitch LTFs as shown in Figure 

4-16.    Second order effect is hardly present in the pitch auto power spectrum. A small 

peak at the low frequency range of the cross spectrum is visible. This property was 

investigated in the later stage of the research but found the effect of second order waves 

negligible. Similar to heave motion, it was observed that heave cross and power 

spectrum for different seas holds a valid range for a frequency range 0.36 to 0.9 rad/sec 

which is equivalent to non dimensional frequency range 1.5 to 3.8.  

The experimental LTF values are same for the first two sea states while it 

decreases for higher sea states for some particular frequency range as shown in Figure 

4-16. It was evidently seen that pitch LTF values due to input waves of Hs=10.0m & 

12.2m decrease as the sea states increase in the frequency range 0.35 to 0.6 rad/sec (i.e. 

for non dimensional frequency range of 1.5 to 2.5) . The same phenomenon was 

observed near the natural frequency range even though in between frequency range there 

is not much difference in the LTF values.  

Pitch resonance frequency was observed at 0.876 rad/sec where the humps were 

present in LTF plot. Natural frequency of pitch motion is slightly different from heave 

motion which was observed at 0.83 rad/sec as in Figure 4-7.  
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Figure 4-16 Pitch motion experimental LTF and phase angle 

 

4.9 Nonlinearity of pitch motion 

We investigated the nonlinearity of the pitch response in the time-domain similar 

to the heave motion. This was carried out by comparing the probability of exceedence of 

crest height of the linear theoretical pitch motion in the Gaussian Sea with the measured 

ones in the non-Gaussian seas as shown in Figure 4-17. Similar to heave motion it is 

observed that measured pitch probability of exceedence follows Rayleigh curve for 

lower seas and slightly deviates for wave 3& 4. Hence pitch motion is weakly nonlinear 

for all the seas. 
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Figure 4-17 Pitch motion probability of exceedence 
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4.10 Pitch LTF theory vs. experiment 

LTFs and its phase angles from theory were compared with experiment values as 

shown in Figure 4-198 and Figure 4-19. Difference between theoretical and 

experimental LTF values was clearly visible from the plot for a non dimensional 

frequency range of 1.5-2.5. Theoretical LTF values were always higher than the 

experimental LTF values for all the sea states during this frequency range and near 

natural frequency. Theoretical LTF values were found to be 25% to 33% more than 

experiment for the different sea states. It was seen that phase angles of experimental LTF 

and theoretical LTF were following same trend as in the case of heave motion.  

 

 

Figure 4-18 Comparison of phase angles of theoretical and experimental LTF 
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Figure 4-19 Comparison of theoretical and experimental pitch motion LTF 
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4.11 Pitch peaks for theory and experiment    

  

Peak pitch values estimated using Equation 2-14 and were found to be higher 

than the experiment values at the respective seas. Here the percentage errors between the 

theory and experimental peak value are found to be up to 30% (Table 4-4). 

 

 

Figure 4-20 Comparison of theoretical and experimental pitch motions peak values 

 

Table 4-4 Pitch motion peak values comparison 

 

Significant wave 

height(m) 

Peak value (rad) 

(experiment) 

Peak value (rad) 

(theory) 

% error 

4.5 0.04298 0.0474 10.2 

6.5 0.0632 0.0825 30.5 

10.0 0.1183 0.1289 8.9 

12.2 0.1346 0.1536 14.11 
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CHAPTER V 

5 RESULTS OF VOLTERRA QUADRATIC MODEL 

5.1 Heave motion cross-bi spectrum & QTF 

Here we employed Volterra quadratic model with assumption of Gaussian input 

for the calculation of cross bi spectrum shown in Figure 5-1. Using equation 2-62 , 

cross-bi spectrum for heave motion was calculated for different sea conditions. Heave 

cross-bi spectra are having two peaks on the low and high output frequency range. The 

spectrum at low output frequency appears larger in general compared to the higher 

frequency.  

 Similarly QTF was calculated using equation 2.62 and plotted as shown in Figure 5-2 .  

The heave QTFs at low output frequency range are much larger than those at high output 

frequency range. The QTFs in the low output frequency range are the difference 

frequency components, while the QTFs in the high output frequency range are the sum 

frequency components. Second order sum and difference frequency effect at the 

resonance frequency is visible for output frequency around 0.8 rad/sec. But their effect 

found to be very small compared with input wave frequency range which was studied 

during comparison of reconstructed linear and second order response.   

 Mean second order responses were noticed for all the four sea states in Figure 

5-2. They are present along Ω1 axis at Ω2 =0. It was seen that Mean responses are 

relatively negligible for lowest sea state i.e. for Hs=4m. But its presence was clearly 

visible for the next three sea states. Second order QTFs for heave response decrease as 

the sea severity increases, which is similar to LTFs. This trend clearly exists for wave 
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no. 1, 2 & 3. For wave Hs =12.2 m, QTFs are larger compared to those at Hs = 10 m. 

The reason cannot be identified. However it is clear that QTF and mean second order 

terms not only depend on the system but also on the sea severity.  

 

  

  

Figure 5-1 Cross bi spectrum of heave motion for different sea states. Cross bi spectrum 

was plotted against sum and difference frequency axis.  
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Figure 5-2 QTF of heave motion for sea states from Hs = 4.5m to 12.2m plotted against 

sum and difference frequency axis 
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5.2 Pitch motion cross-bi spectrum and QTF 

Two peaks are visible at high and low output frequency range. The pitch QTFs at 

low output frequency range is large compared to high frequency range. The QTFs at the 

high output frequency range are the sum frequency components, whereas those in the 

low output frequency are the difference frequency components. It was inferred that 

difference frequency components are dominant in the second order pitch motion 

compared to sum frequency components. Here also variation in pitch response QTFs 

with the sea severity was clearly visible for all the four waves. For 2
nd

 and 3
rd

 responses, 

QTF decreases with increase in sea severity and 4
th

 response does not follow the trend. 

This phenomenon should be read in conjunction with the reconstruction of responses 

discussed in the following chapter.  Second order sum and difference frequency effect on 

the pitch resonance frequency was noticed around 0.8 rad/sec. But similar to heave 

second order responses, these are also very small when compared with resonance effect 

input frequency range which includes both linear and higher order terms. Mean second 

order pitch response is found to be negligibly small. 
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Figure 5-3 Pitch motion cross-bi spectrum for different sea states 
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Figure 5-4 Pitch motion QTF for different sea states 
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CHAPTER VI 

6 RECONSTRUCTION AND COHERENCY TEST 

6.1 Reconstruction of the heave response time series from LTF 

Response time series was reconstructed using equation 2-41 which can be written 

ina concise form as shown below (eqn 2-63). 
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Reconstruction was done in two steps i.e. Reconstruction of the linear part and 

reconstruction of the second order part. Linear heave response was reconstructed using 

experimental LTF as shown in Figure 6-1 to Figure 6-4 using first term of equation 2-64. 

As discussed earlier experimental LTF range was between 0.36 and 0.9 rad/sec. 

Reconstruction done between these ranges almost exactly matches with the measured 

response for the first three waves.  It was inferred that measured response is mainly due 

to input waves in the frequency range 0.36 to 0.9 rad/sec. So contribution of second 

order response to the total heave response is negligible as discussed in section 3.5.  Only 

for the last response (for input wave Hs=12.2m) noticeable differences in heave between 

measured and reconstructed response was observed. This is maybe an indication that 
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second order responses contribution to the total response is very negligible except for 

very high seas of order great than 10m.  

 

 

Figure 6-1 Reconstructed heave response from LTF - Hs=4.5m 

 

 

Figure 6-2 Reconstructed heave response from LTF - Hs=6.5m 
 

 

Figure 6-3 Reconstructed heave response from LTF - Hs=10.0m 



 76 

 

 

Figure 6-4 Reconstructed heave response from LTF - Hs=12.2m 

 

6.2 Reconstruction of second order heave response from QTF 

Reconstruction of second order response from QTF was done using second term 

of equation 2-64. Reconstructed responses were plotted as shown in Figure 6-5 to Figure 

6-8. Reconstructed sum and difference frequency components of the second order heave 

response was calculated up to 2000 seconds and was added to get the total second order 

response. Transient (high frequency) effects are visible on second order responses 

especially on sum frequency part as they travel in groups. Contribution of second order 

response increases gradually from lower to higher seas as expected with an exception to 

the response from input wave of Hs=6.5m. Second order response from Hs=6.5m is 

found to be greater than Hs=10.0m. This property was further studied in the following 

sections of coherency value calculation (section 6.8) where it was noticed that second 

order responses of 2
nd

 case in the lower frequency range was overestimated. It was 

expected that peak of second order response should occur at the peak of input wave 

group. It was observed that second order responses occur at input wave peaks as 
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expected. Mean and variance of second order heave response was calculated and is as 

shown in table 5.1. 

 

Table 6-1 Mean values of second order heave response 

  Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Mean -4.599x10^-4 -0.0024  0.0048 0.0026 

Variance 0.0032 0.0220 0.0080 0.0423 

 

 

From the table the variance increases as sea state increases with an exception for 

Hs=6.5 as discussed before. Mean values clearly exist for second order response while it 

was negligible for the measured response. Periods of zero up-crossing for second order 

heave response was calculated and is as shown in Table 5.2. 

 

Table 6-2 Zero upcrossing of second order heave response 

 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Zero 

upcrossing 

11.82sec 13.67sec 14.03sec 16.77sec 
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Figure 6-5 Reconstructed second order heave response from QTF - Hs=4.5m 
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Figure 6-6 Reconstructed second order heave response from QTF - Hs=6.5m 
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Figure 6-7 Reconstructed second order heave response from QTF - Hs=10.0m 
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Figure 6-8 Reconstructed second order heave response from QTF - Hs=12.2m 
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6.3 Reconstruction of total heave response – LTF +QTF 

Both linear and second order reconstructed response time series were added 

together to get the total response and were compared with the measured response as 

shown below from Figure 6-9 to Figure 6-12. Both reconstructed and measured matches 

very well. 

 

 
Figure 6-9 Reconstructed heave response from QTF+LTF for (Hs=4.5m) 

 

 

Figure 6-10 Reconstructed heave response from QTF+LTF for (Hs=6.5m) 
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Figure 6-11 Reconstructed heave response from QTF+LTF for (Hs=10.0m) 

 

Figure 6-12 Reconstructed heave response from QTF+LTF for (Hs=12.2m) 

 

6.4 Reconstruction of the pitch response (linear) from LTF 

Similar to heave time series reconstruction, we applied the same method for the 

reconstruction of the Pitch time series. Pitch linear response was reconstructed from LTF 

and plotted as shown below from Figure 6-13 to Figure 6-16. Similar to heave response, 

an experimental LTF frequency range of 0.36 to 0.9 rad/sec was chosen for the 

reconstruction . Reconstruction from LTF itself exactly matches with measured one for 

the first two responses which is again an indication that second order contribution to the 

total response is negligible for them. Small difference in the reconstructed and measured 

responses was observed in the last two cases. 
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Figure 6-13 Reconstructed pitch linear response from LTF - Hs=4.5m 

 

Figure 6-14 Reconstructed pitch linear response from LTF - Hs=6.5m 

 

Figure 6-15 Reconstructed pitch linear response from LTF - Hs=10.0m 
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Figure 6-16 Reconstructed pitch linear response from LTF - Hs=12.2m 

 

6.5 Reconstruction of second order pitch response from QTF 

Second order pitch response was reconstructed from QTF as shown in Figure 

6-17 to Figure 6-20 for all the four waves. Sum and difference frequency components 

move in groups showing the transient nature. Sum frequency component increases as the 

sea state increases. So unlike heave response both sum and difference frequency 

components are important in the higher seas.  Mean and variance of second order pitch 

motion was calculated as is shown in Table 6-3. 
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Table 6-3 Mean and variance of second order pitch response 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Mean -4.95x10^-6 -3.65 x 10^-5  4.467 x 10^-5 4.6135 x 10^-5 

Variance 2.49 x10^-6 3.0179 x 10^-5 8.457 x 10^-6 2.2 x 10^-5 

 

 

Mean pitch response is found to be negligibly small and increases as the sea state 

increases. Similar to heave response, the variance increases as the sea state increases 

except for response from input wave of Hs=6.5m which is difficult to explain. Zero 

upcrossing periods for the pitch response for all the seas were calculated and are shown 

in Table 6-4. 

 

Table 6-4 Zero upcrossing periods of second order pitch response 

 Hs=4.5m Hs=6.5m Hs=10.0m Hs=12.2m 

Zero upcrossing 

period 

11.55 sec 14.05 sec 8.1566 sec 8.7944 sec 
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Figure 6-17 Reconstructed pitch response from QTF (Hs=4.5m) 
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Figure 6-18 Reconstructed pitch response from QTF (Hs=6.5m) 
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Figure 6-19 Reconstructed pitch response from QTF (Hs=10.0m) 
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Figure 6-20 Reconstructed pitch response from QTF (Hs=12.2m) 
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6.6 Reconstruction of total pitch response- LTF+QTF 

Total pitch responses were calculated from L+Q and plotted as shown in Figure 

6-21 to Figure 6-24. The reconstructions are in good agreement with respective 

measured responses. 

 

 

Figure 6-21 Reconstructed total pitch response (LTF+QTF) - Hs=4.5m 

 

Figure 6-22 Reconstructed total pitch response (LTF+QTF) - Hs=6.5m 
 



 92 

 

Figure 6-23 Reconstructed total pitch response (LTF+QTF) - Hs=10.0m 
 

 

Figure 6-24 Reconstructed total pitch response (LTF+QTF) - Hs=12.2m 

 

6.7 Heave response energy spectrum; reconstructed vs. experiment 

Energy spectra of total reconstructed heave responses were calculated using 

Fourier transform and compared with measured response spectra. These were plotted as 

shown in Figure 6-25 to Figure 6-28 on a semi logarithmic scale so that minute details 

were available for inspection. It was observed that both spectra match exactly in the 

experimental LTF frequency range of 0.36 to 0.9 rad/sec. For the responses due to input 

waves of Hs=6.5 m and 12.2 m, lower frequency response (reconstructed) is higher than 

measured response in the range between 0.15 to 0.25 rad/sec. The method overestimated 
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the second order difference frequency component in these range of frequency. This may 

be due to very low values at the tail of autospectrum resulting in higher values of QTF as 

discussed in Figure 2-4. Energy spectrum of the reconstructed response does not match 

with the measured wave spectrum for a frequency ranges outside LTF frequency range. 

It was inferred that higher order responses greater than second order was present in the 

total response. It was assumed that proper calculation of higher order response and 

summing up to the first and second order responses will result in the measured energy 

spectrum. 

 

 

Figure 6-25 Reconstructed vs. measured response energy spectrum (Hs=4.5m) 

 



 94 

 
Figure 6-26 Reconstructed vs. measured response energy spectrum (Hs=6.5m) 

 

 

 

Figure 6-27 Reconstructed vs. measured response energy spectrum (Hs=10.0m) 
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Figure 6-28 Reconstructed vs. measured response energy spectrum (Hs=12.2m) 

 

6.8 Coherency of reconstructed heave response 

The coherencies of the reconstructed response from experimental LTF and QTF 

are plotted as shown in Figure 6-29 to Figure 6-32. The reconstruction from 

experimental LTF shows a coherency of 1. Coherency of second order response almost 

lies outside the experimental LTF frequency range. This validated our assumption that 

frequency range between 0.36 to 0.9 rad /sec falls in the linear frequency range, if the 

higher order term responses greater than second order are absent in these region. Second 

order responses do not have any effect on the resonance frequency 0.83 rad/sec which 

lies completely in the linear frequency range. Coherency of response due to input waves 

of Hs=6.5m and 12.2m are greater than 1 (approx. equal to 2.5) for a frequency range of 

0.15 to 0.25 rad /sec which is due to overestimation in calculation as discussed in section 
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6.7. This may be due to high values in the QTF calculation due to presence of very small 

values in the tail of the energy spectrum which comes in the denominator in the equation 

2-60.Coherency value at 0 rad/sec frequency indicates the second order mean heave 

motion which was observed for all the responses except for the first wave. This 

observation is an indication of the presence of second order slowly varying heave drift 

motion. 

 

 

Figure 6-29 Coherency test for the reconstructed heave response - Hs=4.5m 
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Figure 6-30 Coherency test for the reconstructed heave response - Hs=6.5m 

 

 

Figure 6-31 Coherency test for the reconstructed heave response - Hs=10.0m 
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Figure 6-32 Coherency test for the reconstructed heave response - Hs=12.2m 

 

6.9 Pitch response energy spectrum; reconstructed vs. experiment 

Second order pitch energy spectra were calculated using Fourier transform and 

were compared with measured spectrum as shown in Figure 6-33 to Figure 6-36. Similar 

to heave response, pitch energy spectra in the experimental LTF frequency range exactly 

follows the measured spectra. Addition of higher order terms is required to make total 

response equivalent to measured response. Overestimation of energy spectra in low 

frequency range is observed for Hs=6.5m and 12.2m. 
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Figure 6-33 Reconstructed vs. measured pitch energy spectrum - Hs=4.5m 

 

 

 

Figure 6-34 Reconstructed vs. measured pitch energy spectrum - Hs=6.5m 
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Figure 6-35 Reconstructed vs. measured pitch energy spectrum - Hs=10.0m 

 

 

Figure 6-36 Reconstructed vs. measured pitch energy spectrum - Hs=12.2m 
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6.10 Coherency of reconstructed pitch response 

Coherency of reconstructed responses from experimental LTF (linear) and QTF 

are shown in Figure 6-37 to Figure 6-40 . Similar to heave response, total responses 

mainly constitutes of linear part between 0.35 to 0.9 rad/sec. Contribution from second 

order response is very small and is almost zero in some regions. High pitch coherency 

value in high frequency range was noticed. So in high frequency range second order 

response contribution to the measured response is much higher than low frequency 

range.  Referring to pitch motion cross-bi spectrum and QTF, it was observed that in 

addition to sum frequency component, output frequency of a small part of difference 

frequency also lies in the high frequency range. So both sum and a part of difference 

frequency contribute to the high frequency range. Energy spectra of pitch response due 

to input waves of Hs=6.5 m and 12.2 m were overestimated similar to heave response. 

 

 

Figure 6-37 Coherency test for the reconstructed pitch response - Hs=4.5m 



 102 

 

 

Figure 6-38 Coherency test for the reconstructed pitch response - Hs=6.5m 
 

 

 

Figure 6-39 Coherency test for the reconstructed pitch response - Hs=10.0m 
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Figure 6-40 Coherency test for the reconstructed pitch response - Hs=12.2m 
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CHAPTER VII 

7 UNIOM-MOTION MODEL 

7.1 UNIOM-heave and pitch motion 

UNIOM (Universal Nonlinear Input-Output Model) is based on the assumption 

that a non linear real wave input acting on a system will produce non linear output which 

is best described by the following schematic diagram. 

 

 

 

 

 

 
 

Figure 7-1 Schematic diagram for UNIOM Model 

 

This approach has been previously used by Adil ( Adil 2004) , Richer (Richer 

2005), Rajith ( Rajith 2006) for the calculation of forces and motions. A detailed 

description of this method is given by Kim (2008). Even though proper theoretical 

background has been developed for the calculation of UNIOM-diffraction and UNIOM-

Kinematics, such an approach was not in this case due to insufficient time. But from the 

previous experience and intuition we applied this method for the prediction of ship 

vertical response as well and found to be helpful in prediction of the response. 

UNIOM is a semi-empirical model which uses the real wave data from the wave 

tank and hydrodynamically calculated system behavior (e.g. LTF & QTF). For the 

hydrodynamic LTF (RAO), theoretical LTF values provided by Dr.Yongwan Kim from 

 

Nonlinear Input 
 

Nonlinear Output 

 

UNIOM 

(LTF+QTF) 
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Seoul University were used. These values were calculated by a 3D Panel program called 

as 'WISH' based on a Rankine panel method and time domain approach. This software 

have already compared and validated the output with other recognized ship motion 

softwares used in industry like 'SWAN' and 'LAMP'. Calculation and application of 

theoretical QTF in UNIOM application was beyond the scope of the project and was 

hence avoided. 

UNIOM-Motion equation can be written as given below. 
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where Aj denotes the complex amplitude of the measured wave, indicating amplitude 

and phase angle. Note that this is not the familiar random phase angle as has been used 

in the Volterra quadratic model that assumes Gaussian input. UNIOM transmits at each 

time step precisely the effect of the nonlinearity of the wave onto the response. This 

study used only the first part of equation which includes LTF as discussed before. 

7.2 Comparison of heave response from UNIOM with measured response 

 
 

Figure 7-2 Heave response from UNIOM compared with measured response (Hs=4.5m) 
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Figure 7-3 Heave response from UNIOM compared with measured response (Hs=6.5m) 

 

Figure 7-4 Heave response from UNIOM compared with measured response 

(Hs=10.0m) 

 
 

 

Figure 7-5 Heave response from UNIOM compared with measured response 

(Hs=12.2m) 

 

Heave response were calculated using UNIOM- LTF and were plotted along with 

measured response as shown in  
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Figure 7-2 to Figure 7-5 . It was clearly visible that UNIOM response almost exactly 

follows the measured response. But it is necessary to have clear picture of the 

comparison so we compared the responses in terms of variances. The variance was 

calculated up to 2000 sec as shown in Table 6.1. The variances of UNIOM are higher 

than those of experiment above sea state Hs =10.0 m. The UNIOM seems to work for 

the first three sea states. Thus UNIOM-Motion-LTFs does not simulate closely beyond 

Hs = 10 m. It may be due to the lack of the QTF.+ CTF which beyond the scope of this 

study. 

 

Table 7-1 Comparison of variance of heave from experiment and UNIOM 

Significant wave 

height(m) 

Variance 

(experiment) 

Variance 

(UNIOM) 

4.5 0.1703 0.1466 

6.5 0.51 0.4982 

10.0 1.5225 1.7039 

12.2 2.8487 3.2486 
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7.3 Comparison of peak values of heave motion from UNIOM and measured 

response 

 
Figure 7-6 Peak values of heave motion from experiment and UNIOM 

 

Peak values were picked from UNIOM simulated heave motion time series and 

experiment, compared and plotted as shown in Figure 7-6. 

 

Table 7-2 Comparison of heave peak between UNIOM and experiment 

 

 

Significant wave 

height (m) 

Peak value 

(experiment) 

Peak value 

(UNIOM) 

% error 

4.5 1.2457 1.2019 3.5 

6.5 2.0298 2.0574 1.36 

10.0 3.6519 3.6434 0.2 

12.2 4.976 4.3406 12.7 
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The peak responses simulated are within 10% error for the first three seas. Here 

again we have relatively large discrepancy at the 4
th

 sea, i.e., the simulated peak is found 

to be less than the measured. The foregoing comparisons indicate that the UNIOM-

diffraction-LTFs does not simulate closely when the seas are higher than the sea of 

significant wave height 10.0 m. This situation indicates that the deficit might be due to 

the lack of higher-order frequency response function such as QTFs and CTFs.  

7.4 Comparison of pitch response from UNIOM with measured response 

 

 

Figure 7-7 Pitch response from UNIOM compared with measured response (Hs=4.5m) 
 

 

Figure 7-8 Pitch response from UNIOM compared with measured response ( Hs=6.5m) 
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Figure 7-9 Pitch response from UNIOM compared with measured response ( Hs=10.0m) 

 

 
Figure 7-10 Pitch response from UNIOM compared with measured response 

(Hs=12.2m) 

 

It is clearly visible from Figure 7-7 to Figure 7-10 that UNIOM-Pitch motion 

time series follows almost similarly to the measured response. But it is necessary to 

check the difference in variance of the simulation and measured responses. 

 

Table 7-3 Pitch motion variance compared for UNIOM and experiment 

Significant wave 

height(m) 

Variance 

(experiment) 

Variance  

 (UNIOM) 

4.5 0.0002 0.0002 

6.5 0.0005 0.0006 

10.0 0.0014 0.0019 

12.2 0.0020 0.0030 
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The difference in variance between UNIOM and measured becomes larger as it goes to 

higher sea state as shown in Table 7-3.  

7.5 Comparison of peak values of pitch motion from UNIOM and measured response 

 
Figure 7-11 Peak values of pitch motion from experiment and UNIOM 

 

Peak values of pitch motion were computed and plotted as shown in Figure 7-11 and 

difference in their values were given in the below table. 

 

Table 7-4 Pitch peak comparison between experiment and UNIOM 

 

It can be seen that error in the peak value estimation is less than 10% which implies 

UNIOM-Model as a good prediction model in high seas. 

Significant wave 

height (m) 

Pitch Peak value 

for 4000sec 

(experiment) 

Pitch Peak value 

for 4000 sec 

(UNIOM) 

% error 

4.5 0.0504 0.05 0.79 

6.5 0.0889 0.0922 3.71 

10.0 0.1418 0.1531 7.96 

12.2 0.1619 0.1733 7.04 
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CHAPTER VIII 

8 SUMMARY AND CONCLUSION 

      Linear transfer functions are generally considered as a system characteristics 

and are completely independent of sea states. But this assumption was questioned by 

Dalzel.et.al (1962) by conducting experiment on pitch motion of destroyer. He found 

that in addition to system characteristics, transfer functions also depend on sea severity. 

This research reinvestigated and validated this result by studying the heave and pitch 

motion of a conventional 175 m container ship with zero speed. We found that vertical 

response transfer function decreases as sea severity increases and theory overestimates 

the peak up to 42% in the case of heave motion and 30% in the pitch motion. We again 

reconfirmed this difference by comparing the experimental LTF with theoretical LTF. 

The same study was conducted on second order responses. QTFs were extracted from 

the second order vertical response using Blackman-Tuky method. From this study it was 

found that QTF is also a function of sea severity and it decreases as sea state increases 

even though discrepancy was found in the case of response due to input wave of 

Hs=12.2m.   

     Volterra quadratic model was found to be a powerful tool for the estimation of 

QTF and extraction of second order response. In this study non Gaussian waves were 

used for the generation of vertical response.  A complete decomposition of the measured 

responses into linear responses was not possible due to uncertainty regarding the 

involvement of higher order terms. Over estimation of second order vertical responses in 

the low frequency range was observed for two cases which may be due to low values of 
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energy spectra at the tails during the approximation of Volterra model. Still the research 

had given insight into overall effect of second order motion in the vertical response of a 

ship. The effect of sea severity on QTF was clearly observed in the behavior of 

responses due to input wave of Hs=4.5 and 10m. Second order response frequencies 

were found to be outside the heave and pitch natural frequency. Further study of 

variances between reconstructed second order responses and measured responses 

showed that second order motion have negligible effect on the vertical response (pitch 

and heave) of a ship (1 to 2% of measured response) . Mean components of the second 

order responses were noticed and slowly varying heave motion were observed for all the 

seas except for the lowest one (Hs=4.5m). 

     Reconstruction of the responses using our assumed linear frequency range 

alone was found to be closely following the measured responses. Addition of second 

order responses was having negligible effect. The effect of second order responses on 

the total responses were further studied in the Coherency value and found that effect of 

second order responses were negligible in the frequency range 0.35 to 0.9 rad/sec which 

was our area of interest.  

     In the second stage of the research a preliminary study on the UNIOM-Model 

was done. In this study, the UNIOM simulated vertical response and measured responses 

were compared. In addition, we calculated the peak values of the simulation and 

compared with the peak values of experiment. It was seen that UNIOM –Motion gives a 

good prediction of the response especially for response due to input wave of Hs=10.0m. 

Error in pitch motion peak value prediction was less than 10% which is a noticeable 
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result. Since we confined our UNIOM study to theoretical LTF it was expected that 

inclusion of higher order system characteristics will drastically improve the method. 
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